תרגול 6 תשעז: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
אין תקציר עריכה
שורה 1: שורה 1:
חזרה ל[[83-116, בדידה 1 להנדסה, מערכי תרגול|דף מערכי התרגול]].
חזרה ל[[83-116, בדידה 1 להנדסה, מערכי תרגול|דף מערכי התרגול]].


==המשך קבוצות==
=המשך קבוצות=


===תרגיל===
==תרגיל==
הוכח כי <math>A\cap (B/C)=(A\cap B) / (A\cap C)</math>
הוכיחו כי <math>A\cap (B\setminus C)=(A\cap B) \setminus  (A\cap C)</math>.


====פתרון====
===פתרון===
דרך גרירות לוגיות:
דרך גרירות לוגיות:


<math>x\in A\cap (B/C)\iff (x\in A) \and [(x\in B) \and (x\notin C)]\iff [(x\in A) \and (x\in B) \and (x\notin C)] \or [(x\in A) \and (x\in B) \and (x\notin A)] </math>
<math>x\in A\cap (B\setminus C)\iff (x\in A) \and [(x\in B) \and (x\notin C)]\iff [(x\in A) \and (x\in B) \and (x\notin C)] \or [(x\in A) \and (x\in B) \and (x\notin A)] </math>




שורה 21: שורה 21:




דרך הכלה דו כיוונית:
הוכחה בעזרת הכלה דו כיוונית:


(<math>\subseteq</math>) נניח <math>x\in A\cap(B\backslash C)</math> אזי  
בכיוון (<math>\subseteq</math>) נניח <math>x\in A\cap(B\backslash C)</math> אזי  


<math>x\in A \land x\in B \land x\not\in C \Leftarrow</math>
<math>x\in A \land x\in B \land x\not\in C \Leftarrow</math>
שורה 29: שורה 29:
<math>x\in (A\cap B) \backslash (A\cap C)</math>
<math>x\in (A\cap B) \backslash (A\cap C)</math>


(<math>\supseteq</math>) נניח <math>x\in (A\cap B) \backslash (A\cap C)</math> אזי  
בכיוון (<math>\supseteq</math>) נניח <math>x\in (A\cap B) \backslash (A\cap C)</math> אזי  


<math>x\in A\cap B \land x\not\in A\cap C \Leftarrow</math>
<math>x\in A\cap B \land x\not\in A\cap C \Leftarrow</math>
שורה 36: שורה 36:
<math>x\in A\cap(B\backslash  C)\Leftarrow </math>
<math>x\in A\cap(B\backslash  C)\Leftarrow </math>


==== משלים ====
=== משלים ===


'''הגדרה''': תהי קבוצה U, ונביט בתת קבוצה שלה A. ניתן להגדיר את ה'''משלים''' של A כאוסף האיברים בU שאינם בA (כלומר ההפרש <math>U\setminus A</math>), מסומן <math>A^c</math>. לא ניתן לדבר על משלים אוניברסאלי ללא U מכיוון שאין קבוצה המכילה את כל הדברים בעולם (אחרת נגיע לסתירות כמו פרדוקס ראסל).
'''הגדרה''': תהי קבוצה <math>U</math>, ונביט בתת קבוצה שלה <math>A</math>. ניתן להגדיר את ה'''משלים''' של <math>A</math> כאוסף האיברים ב-<math>U</math> שאינם ב-<math>A</math> (כלומר ההפרש <math>U\setminus A</math>), המסומן <math>A^c</math>. לא ניתן לדבר על משלים אוניברסלי ללא <math>U</math> מכיוון שאין קבוצה המכילה את כל הדברים בעולם (אחרת נגיע לסתירות כמו פרדוקס ראסל).


תכונות בסיסיות:
תכונות בסיסיות:
* <math>A\cup A^c = U</math>
* <math>A\cup A^c = U</math>
* <math>\emptyset^c = U</math>
* <math>\varnothing^c = U</math>
* <math>U^c = \emptyset</math>
* <math>U^c = \varnothing</math>
* <math>(A^c)^c = A</math>
* <math>(A^c)^c = A</math>


שורה 50: שורה 50:
*<math>(A\cup B)^c = A^c \cap B^c</math>
*<math>(A\cup B)^c = A^c \cap B^c</math>
הערה: באופן כללי מתקיים  
הערה: באופן כללי מתקיים  
* <math>(\cap _{i\in I} A_i)^c = \cup _{i\in I} A_{i}^c </math>
* <math>(\bigcap _{i\in I} A_i)^c = \bigcup _{i\in I} A_{i}^c </math>
* <math>(\cup _{i\in I} A_i)^c = \cap _{i\in I} A_{i}^c </math>
* <math>(\bigcup _{i\in I} A_i)^c = \bigcap _{i\in I} A_{i}^c </math>




'''הגדרה''': תהי קבוצה A. נגדיר את '''קבוצת החזקה''' של A בתור אוסף כל תתי הקבוצות של A. מסומן <math>P(A)=\{X:X\subseteq A\}</math>
'''הגדרה''': תהי קבוצה <math>A</math>. נגדיר את '''קבוצת החזקה''' של <math>A</math> בתור אוסף כל תת הקבוצות של <math>A</math>. נסמן <math>P(A)=\{X:X\subseteq A\}</math>.


דוגמא:
דוגמה:


<math>A=\{1,2\}</math> אזי <math>P(A)=\{\{\},\{1\},\{2\},\{1,2\}\}</math>.  
<math>A=\{1,2\}</math> אזי <math>P(A)=\{\{\},\{1\},\{2\},\{1,2\}\}</math>.  
שורה 62: שורה 62:
האם אתם יכולים למנות כמה איברים יש בקבוצת החזקה?
האם אתם יכולים למנות כמה איברים יש בקבוצת החזקה?


===תרגיל ממבחן===
==תרגיל ממבחן==
יהיו A,B,C קבוצות. הוכיחו/הפריכו:
יהיו A,B,C קבוצות. הוכיחו/הפריכו:


א. אם <math>A \not\subseteq B \cap C</math> אזי <math>(A/B)\cap(A/C)\neq \phi</math>
א. אם <math>A \not\subseteq B \cap C</math> אזי <math>(A\setminus B)\cap(A\setminus C)\neq \varnothing</math>


ב. אם <math>A\subseteq B</math> אזי <math>A\cup(B/A)=B</math>
ב. אם <math>A\subseteq B</math> אזי <math>A\cup (B\setminus A)=B</math>


ג. אם <math>A\cap B=\phi</math> אזי <math>P(A)\cap P(B) = \{\phi\}</math>
ג. אם <math>A\cap B=\varnothing</math> אזי <math>P(A)\cap P(B) = \{\varnothing\}</math>




====פתרון====
===פתרון===
א. '''הפרכה''': <math>A=\{1,2\},B=\{1\},C=\{2\}</math>. אזי ברור שA איננה מוכלת בחיתוך של B וC אבל <math>(A/B)\cap(A/C)=\{2\}\cap\{1\}=\phi</math>
א. '''הפרכה''': <math>A=\{1,2\},B=\{1\},C=\{2\}</math>. אזי ברור שA איננה מוכלת בחיתוך של B וC אבל <math>(A\setminus B)\cap(A\setminus C)=\{2\}\cap\{1\}=\varnothing</math>




שורה 82: שורה 82:


דרך נוספת: נגדיר את B להיות הקבוצה האוניברסאלית <math>U:=B</math> ואז צריך להוכיח כי  
דרך נוספת: נגדיר את B להיות הקבוצה האוניברסאלית <math>U:=B</math> ואז צריך להוכיח כי  
<math>A\cap A^c =U</math> וזה אכן נכון!
<math>A\cup A^c =U</math> וזה אכן נכון!




ג. נניח בשלילה ש<math>P(A)\cap P(B)\neq \{\phi\}</math>. מכיוון שהקבוצה הריקה שייכת לכל קבוצת חזקה החיתוך אינו ריק. לכן לפי הנחת השלילה קיימת קבוצה לא ריקה <math>\phi \not=C</math> השייכת לחיתוך <math>P(A)\cap P(B)</math>. קבוצות החזקה הן אוסף תתי הקבוצות, ולכן <math>C\subseteq A \and C\subseteq B</math>. מכיוון שC אינה ריקה קיים בה איבר <math>\exists c\in C</math> וקל מאד לראות ש<math>(c\in A)\and (c\in B) </math> ולכן c מוכל בחיתוך בסתירה לכך שהחיתוך ריק.
ג. נניח בשלילה ש<math>P(A)\cap P(B)\neq \{\varnothing\}</math>. מכיוון שהקבוצה הריקה שייכת לכל קבוצת חזקה החיתוך אינו ריק. לכן לפי הנחת השלילה קיימת קבוצה לא ריקה <math>\varnothing \not=C</math> השייכת לחיתוך <math>P(A)\cap P(B)</math>. קבוצות החזקה הן אוסף תת הקבוצות, ולכן <math>C\subseteq A \and C\subseteq B</math>. מכיוון שC אינה ריקה קיים בה איבר <math>\exists c\in C</math> וקל מאד לראות ש<math>(c\in A)\and (c\in B) </math> ולכן c מוכל בחיתוך בסתירה לכך שהחיתוך ריק.

גרסה מ־18:21, 23 בנובמבר 2017

חזרה לדף מערכי התרגול.

המשך קבוצות

תרגיל

הוכיחו כי [math]\displaystyle{ A\cap (B\setminus C)=(A\cap B) \setminus (A\cap C) }[/math].

פתרון

דרך גרירות לוגיות:

[math]\displaystyle{ x\in A\cap (B\setminus C)\iff (x\in A) \and [(x\in B) \and (x\notin C)]\iff [(x\in A) \and (x\in B) \and (x\notin C)] \or [(x\in A) \and (x\in B) \and (x\notin A)] }[/math]


בצד הימני הוספנו סתירה בעזרת הקשר "או" ולכן נשארנו עם ביטוי שקול. כעת נשתמש בחוק הפילוג של הלוגיקה:


[math]\displaystyle{ \iff [(x\in A) \and (x\in B)]\and [(x\notin C)\or(x\notin A)]\iff [(x\in A) \and (x\in B)]\and \neg [(x\in C)\and(x\in A)] }[/math]


וזה בדיוק מה שרצינו.


הוכחה בעזרת הכלה דו כיוונית:

בכיוון ([math]\displaystyle{ \subseteq }[/math]) נניח [math]\displaystyle{ x\in A\cap(B\backslash C) }[/math] אזי

[math]\displaystyle{ x\in A \land x\in B \land x\not\in C \Leftarrow }[/math] [math]\displaystyle{ x\in A\cap B \land x\not\in A\cap C \Leftarrow }[/math] [math]\displaystyle{ x\in (A\cap B) \backslash (A\cap C) }[/math]

בכיוון ([math]\displaystyle{ \supseteq }[/math]) נניח [math]\displaystyle{ x\in (A\cap B) \backslash (A\cap C) }[/math] אזי

[math]\displaystyle{ x\in A\cap B \land x\not\in A\cap C \Leftarrow }[/math] [math]\displaystyle{ x\in A \land x\in B \land x\not\in C \Leftarrow }[/math] (כי אם [math]\displaystyle{ x\in C }[/math] אזי [math]\displaystyle{ x\in A\cap C }[/math] סתירה) [math]\displaystyle{ x\in A\cap(B\backslash C)\Leftarrow }[/math]

משלים

הגדרה: תהי קבוצה [math]\displaystyle{ U }[/math], ונביט בתת קבוצה שלה [math]\displaystyle{ A }[/math]. ניתן להגדיר את המשלים של [math]\displaystyle{ A }[/math] כאוסף האיברים ב-[math]\displaystyle{ U }[/math] שאינם ב-[math]\displaystyle{ A }[/math] (כלומר ההפרש [math]\displaystyle{ U\setminus A }[/math]), המסומן [math]\displaystyle{ A^c }[/math]. לא ניתן לדבר על משלים אוניברסלי ללא [math]\displaystyle{ U }[/math] מכיוון שאין קבוצה המכילה את כל הדברים בעולם (אחרת נגיע לסתירות כמו פרדוקס ראסל).

תכונות בסיסיות:

  • [math]\displaystyle{ A\cup A^c = U }[/math]
  • [math]\displaystyle{ \varnothing^c = U }[/math]
  • [math]\displaystyle{ U^c = \varnothing }[/math]
  • [math]\displaystyle{ (A^c)^c = A }[/math]

על המשלימים מתקיימים חוקי דה מורגן (הנובעים ישירות מחוקי דה מורגן בלוגיקה):

  • [math]\displaystyle{ (A\cap B)^c = A^c \cup B^c }[/math]
  • [math]\displaystyle{ (A\cup B)^c = A^c \cap B^c }[/math]

הערה: באופן כללי מתקיים

  • [math]\displaystyle{ (\bigcap _{i\in I} A_i)^c = \bigcup _{i\in I} A_{i}^c }[/math]
  • [math]\displaystyle{ (\bigcup _{i\in I} A_i)^c = \bigcap _{i\in I} A_{i}^c }[/math]


הגדרה: תהי קבוצה [math]\displaystyle{ A }[/math]. נגדיר את קבוצת החזקה של [math]\displaystyle{ A }[/math] בתור אוסף כל תת הקבוצות של [math]\displaystyle{ A }[/math]. נסמן [math]\displaystyle{ P(A)=\{X:X\subseteq A\} }[/math].

דוגמה:

[math]\displaystyle{ A=\{1,2\} }[/math] אזי [math]\displaystyle{ P(A)=\{\{\},\{1\},\{2\},\{1,2\}\} }[/math].

האם אתם יכולים למנות כמה איברים יש בקבוצת החזקה?

תרגיל ממבחן

יהיו A,B,C קבוצות. הוכיחו/הפריכו:

א. אם [math]\displaystyle{ A \not\subseteq B \cap C }[/math] אזי [math]\displaystyle{ (A\setminus B)\cap(A\setminus C)\neq \varnothing }[/math]

ב. אם [math]\displaystyle{ A\subseteq B }[/math] אזי [math]\displaystyle{ A\cup (B\setminus A)=B }[/math]

ג. אם [math]\displaystyle{ A\cap B=\varnothing }[/math] אזי [math]\displaystyle{ P(A)\cap P(B) = \{\varnothing\} }[/math]


פתרון

א. הפרכה: [math]\displaystyle{ A=\{1,2\},B=\{1\},C=\{2\} }[/math]. אזי ברור שA איננה מוכלת בחיתוך של B וC אבל [math]\displaystyle{ (A\setminus B)\cap(A\setminus C)=\{2\}\cap\{1\}=\varnothing }[/math]


ב. נתון שלכל [math]\displaystyle{ a\in A }[/math] מתקיים [math]\displaystyle{ a \in B }[/math]. אזי [math]\displaystyle{ x\in [A\cup(B/A)] \iff (x\in A) \or [(x\in B)\and (x\notin A)] \iff [(x\in A) \or (x\in B)] \and [(x \in A)\or (x\notin A)] }[/math]


כעת, הצד הימני הוא טאוטולוגיה וניתן להסיר אותו. מכיוון שנתון [math]\displaystyle{ (x\in A)\rightarrow (x\in B) }[/math] ניתן להסיק בקלות ש[math]\displaystyle{ (x\in A)\or (x\in B) \iff (x\in B) }[/math] כפי שרצינו.

דרך נוספת: נגדיר את B להיות הקבוצה האוניברסאלית [math]\displaystyle{ U:=B }[/math] ואז צריך להוכיח כי [math]\displaystyle{ A\cup A^c =U }[/math] וזה אכן נכון!


ג. נניח בשלילה ש[math]\displaystyle{ P(A)\cap P(B)\neq \{\varnothing\} }[/math]. מכיוון שהקבוצה הריקה שייכת לכל קבוצת חזקה החיתוך אינו ריק. לכן לפי הנחת השלילה קיימת קבוצה לא ריקה [math]\displaystyle{ \varnothing \not=C }[/math] השייכת לחיתוך [math]\displaystyle{ P(A)\cap P(B) }[/math]. קבוצות החזקה הן אוסף תת הקבוצות, ולכן [math]\displaystyle{ C\subseteq A \and C\subseteq B }[/math]. מכיוון שC אינה ריקה קיים בה איבר [math]\displaystyle{ \exists c\in C }[/math] וקל מאד לראות ש[math]\displaystyle{ (c\in A)\and (c\in B) }[/math] ולכן c מוכל בחיתוך בסתירה לכך שהחיתוך ריק.