88-202 תשעט סמסטר א: הבדלים בין גרסאות בדף
(←העשרה) |
|||
שורה 32: | שורה 32: | ||
[https://en.wikipedia.org/wiki/Goodstein%27s_theorem משפט גודשטיין]: הערך בויקיפדיה. מכיל דוגמאות מפורטות של סדרות, והרחבות שונות. | [https://en.wikipedia.org/wiki/Goodstein%27s_theorem משפט גודשטיין]: הערך בויקיפדיה. מכיל דוגמאות מפורטות של סדרות, והרחבות שונות. | ||
[https://youtu.be/s86-Z-CbaHA הפרדוקס של בנך-טרסקי]: איך אפשר - תיאורטית - להפוך כדור זהב אחד לשניים, בעזרת אקסיומת הבחירה. |
גרסה מ־13:25, 11 בנובמבר 2018
מרצה: פרופ' בועז צבאן.
מתרגלת: תמר בר-און.
דרישות הקורס: תרגיל (20% מהציון הסופי), מטלות קריאה עצמית, מבחן (80% מהציון הסופי). חובה להגיש לפחות 70% מתרגילי הבית (מעוגל כלפי מעלה) כדי לקבל ציון בקורס.
הודעות
מטלת קריאה ראשונה בקורס: הוכחת משפט הרקורסיה (+דוגמא מפורטת כבונוס).
תקציר הקורס
תקציר הקורס המתעדכן. מתעדכן מדי הרצאה, ולכן לא מומלץ להורידו אלא לקרוא תמיד מהקישור.
תרגילים
העשרה
איך לספור מעבר לאינסוף: סרטון המסביר באופן מאד ויזואלי ויפה, את המושגים המרכזיים בחלק הראשון של הקורס.
משפט גודשטיין: הערך בויקיפדיה. מכיל דוגמאות מפורטות של סדרות, והרחבות שונות.
הפרדוקס של בנך-טרסקי: איך אפשר - תיאורטית - להפוך כדור זהב אחד לשניים, בעזרת אקסיומת הבחירה.