אנליזה מתקדמת למורים תרגול 6: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "חזרה ל מערכי תרגול. == אקסופנט== ראינו בשבוע שעבר שה...")
 
שורה 15: שורה 15:
כן! נתחיל מדוגמא, ואז נבין את הפתרון הכללי. נחפש <math>x,y\in \mathbb{R}</math> כך ש <math>e^x(\cos y+i\sin y)=-e</math>.
כן! נתחיל מדוגמא, ואז נבין את הפתרון הכללי. נחפש <math>x,y\in \mathbb{R}</math> כך ש <math>e^x(\cos y+i\sin y)=-e</math>.


ראשית, כדי שהתוצאה תהיה ממשית דרוש <math>\sin y=0</math>, ולכן <math>y=0+\pi k</math>. כעת נקבל <math>\cos y\in \{-,0,1\}</math>, וכיון שאנחנו רוצים לקבל מספר שלילי נרצה <math>\cos y=-1</math>, ולכן ניקח <math>y=\pi</math>.
ראשית, כדי שהתוצאה תהיה ממשית דרוש <math>\sin y=0</math>, ולכן <math>y=0+\pi k</math>. כעת נקבל <math>\cos y\in \{-1,0,1\}</math>, וכיון שאנחנו רוצים לקבל מספר שלילי נרצה <math>\cos y=-1</math>, ולכן ניקח <math>y=\pi</math>.


מה שקיבלנו עד כה זה <math>e^{x+\pi i}=-e^x</math>, ולכן אם ניקח <math>x=\ln e=1</math> נקבל <math>e^{1+\pi i}=-e</math> כדרוש.
מה שקיבלנו עד כה זה <math>e^{x+\pi i}=-e^x</math>, ולכן אם ניקח <math>x=\ln e=1</math> נקבל <math>e^{1+\pi i}=-e</math> כדרוש.

גרסה מ־09:37, 11 בדצמבר 2018

חזרה ל מערכי תרגול.

אקסופנט

ראינו בשבוע שעבר שהפונקציה [math]\displaystyle{ f(x+yi)=e^x(\cos y+i\sin y) }[/math] גזירה ומקיימת [math]\displaystyle{ f'(z)=f(z) }[/math], וראיתם בהרצאה שהיא מקיימת את כל התכונות הנדרשות לפונקציית האקספוננט, ולכן הגדרנו: [math]\displaystyle{ e^z=e^x(\cos y+i\sin y) }[/math].

לדוגמא, נחשב [math]\displaystyle{ e^{1+\frac{\pi}{4}i} }[/math]:

[math]\displaystyle{ e^{1+\frac{\pi}{4}i}=e^1(\cos \frac{\pi}{4} +i\sin \frac{\pi}{4})=e(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)=\frac{e\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i }[/math].

תרגיל

כידוע, בממשיים מתקיים [math]\displaystyle{ e^x\gt 0 }[/math]. מה לגבי המרוכבים? האם קיים [math]\displaystyle{ z\in \mathbb{C} }[/math] כך ש [math]\displaystyle{ e^z }[/math] הוא ממשי וקטן מאפס?

פתרון

כן! נתחיל מדוגמא, ואז נבין את הפתרון הכללי. נחפש [math]\displaystyle{ x,y\in \mathbb{R} }[/math] כך ש [math]\displaystyle{ e^x(\cos y+i\sin y)=-e }[/math].

ראשית, כדי שהתוצאה תהיה ממשית דרוש [math]\displaystyle{ \sin y=0 }[/math], ולכן [math]\displaystyle{ y=0+\pi k }[/math]. כעת נקבל [math]\displaystyle{ \cos y\in \{-1,0,1\} }[/math], וכיון שאנחנו רוצים לקבל מספר שלילי נרצה [math]\displaystyle{ \cos y=-1 }[/math], ולכן ניקח [math]\displaystyle{ y=\pi }[/math].

מה שקיבלנו עד כה זה [math]\displaystyle{ e^{x+\pi i}=-e^x }[/math], ולכן אם ניקח [math]\displaystyle{ x=\ln e=1 }[/math] נקבל [math]\displaystyle{ e^{1+\pi i}=-e }[/math] כדרוש.

באופן כללי: יהי [math]\displaystyle{ t\lt 0 }[/math] ממשי. נבחר [math]\displaystyle{ z=\ln |t|+\pi i }[/math] ונקבל [math]\displaystyle{ e^z=-e^{\ln |t|}=-|t|=t }[/math].

תרגיל

הוכיחו שמתקיים: [math]\displaystyle{ e^{\overline{z}}=\overline{e^z} }[/math]

פתרון

לפי הגדרה: [math]\displaystyle{ e^{\overline{z}}=e^{x-yi}=e^x(\cos(-y)+i\sin(-y))=e^x(\cos y-i\sin y)=\overline{e^x(\cos y+i\sin y)}=\overline{e^z} }[/math].