חוג ריבועי: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "'''חוג ריבועי''' הוא חוג שבו כל איבר מקיים משוואה ממעלה שניה מעל השלמים. עבור שלם D חופשי מ...")
 
אין תקציר עריכה
שורה 1: שורה 1:
'''חוג ריבועי''' הוא חוג שבו כל איבר מקיים משוואה ממעלה שניה מעל השלמים.  
'''חוג ריבועי''' הוא חוג שבו כל איבר מקיים משוואה ממעלה שניה מעל השלמים.  


עבור שלם D [[חופשי מריבועים]] (כלומר שאין לו מחלק ריבועי), נסמן <math>\ {\mathcal{O}}_D = \begin{cases}\mathbb{Z}[\sqrt{D}] & D \equiv 1,2 \pmod{4} \\  
עבור שלם D [[חופשי מריבועים]] (כלומר שאין לו מחלק ריבועי), נסמן <math>\ {\mathcal{O}}_D = \begin{cases}\mathbb{Z}[\sqrt{D}] & D \equiv 2,3 \pmod{4} \\  
\mathbb{Z}[\frac{1+\sqrt{D}}{2}] & D \equiv 3 \pmod{4} \end{cases}</math>. החוג <math>\ \mathcal{O}_D</math> הוא "הסגור השלם" של חוג השלמים בשדה <math>\ \mathbb{Q}[\sqrt{D}]</math>. כל חוג ריבועי הוא תת-חוג של חוג מהצורה הזו.
\mathbb{Z}[\frac{1+\sqrt{D}}{2}] & D \equiv 1 \pmod{4} \end{cases}</math>. החוג <math>\ \mathcal{O}_D</math> הוא "הסגור השלם" של חוג השלמים בשדה <math>\ \mathbb{Q}[\sqrt{D}]</math>. כל תחום שלמות ריבועי הוא תת-חוג של חוג מהצורה הזו.

גרסה מ־07:52, 4 ביולי 2019

חוג ריבועי הוא חוג שבו כל איבר מקיים משוואה ממעלה שניה מעל השלמים.

עבור שלם D חופשי מריבועים (כלומר שאין לו מחלק ריבועי), נסמן [math]\displaystyle{ \ {\mathcal{O}}_D = \begin{cases}\mathbb{Z}[\sqrt{D}] & D \equiv 2,3 \pmod{4} \\ \mathbb{Z}[\frac{1+\sqrt{D}}{2}] & D \equiv 1 \pmod{4} \end{cases} }[/math]. החוג [math]\displaystyle{ \ \mathcal{O}_D }[/math] הוא "הסגור השלם" של חוג השלמים בשדה [math]\displaystyle{ \ \mathbb{Q}[\sqrt{D}] }[/math]. כל תחום שלמות ריבועי הוא תת-חוג של חוג מהצורה הזו.