חדוא 1 - ארז שיינר: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 28: שורה 28:


===חסמים===
===חסמים===
*תהי <math>A\subseteq \mathbb{R}</math> אזי:
**<math>M\in\mathbb{A}</math> נקרא '''המקסימום''' של A או '''האיבר הגדול ביותר''' של A אם לכל <math>a\in A</math> מתקיים כי <math>a\leq M</math>
**<math>M\in\mathbb{R}</math> נקרא '''חסם מלעיל''' של A אם לכל <math>a\in A</math> מתקיים כי <math>a\leq M</math>
**<math>m\in\mathbb{A}</math> נקרא '''המינימום''' של A או '''האיבר הקטן ביותר''' של A אם לכל <math>a\in A</math> מתקיים כי <math>a\geq M</math>
**<math>m\in\mathbb{R}</math> נקרא '''חסם מלרע''' של A אם לכל <math>a\in A</math> מתקיים כי <math>a\geq M</math>
*כמו כן:
**אם יש איבר קטן ביותר בקבוצת חסמי המלעיל של A הוא נקרא '''החסם העליון''' של A, או '''הסופרמום''' של A ומסומן <math>\sup(A)</math>
**אם יש איבר גדול ביותר בקבוצת חסמי המלרע של A הוא נקרא '''החסם התחתון''' של A, או '''האינפימום''' של A ומסומן <math>\inf(A)</math>


<videoflash>WdKqIf8xGeY</videoflash>
<videoflash>WdKqIf8xGeY</videoflash>

גרסה מ־12:26, 15 באוקטובר 2020

88-132 חשבון אינפיניטיסימלי 1

מבחנים ופתרונות

סרטוני ותקציר ההרצאות

פרק 1 - מספרים וחסמים

קבוצות מספרים

  • הטבעיים [math]\displaystyle{ \mathbb{N}=\{1,2,3,...\} }[/math]
  • השלמים [math]\displaystyle{ \mathbb{Z}=\{0,-1,1,-2,2,...\} }[/math]
  • הרציונאליים [math]\displaystyle{ \mathbb{Q}=\left\{\frac{p}{n}|p\in\mathbb{Z},n\in\mathbb{N}\right\} }[/math]
  • הממשיים [math]\displaystyle{ \mathbb{R} }[/math], כל השברים העשרוניים כולל האינסופיים




  • לא קיים [math]\displaystyle{ x\in\mathbb{Q} }[/math] כך ש [math]\displaystyle{ x^2=2 }[/math].
  • במילים פשוטות, [math]\displaystyle{ \sqrt{2} }[/math] אינו רציונאלי (בהמשך נוכיח שיש מספר ממשי כזה).

חסמים

  • תהי [math]\displaystyle{ A\subseteq \mathbb{R} }[/math] אזי:
    • [math]\displaystyle{ M\in\mathbb{A} }[/math] נקרא המקסימום של A או האיבר הגדול ביותר של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\leq M }[/math]
    • [math]\displaystyle{ M\in\mathbb{R} }[/math] נקרא חסם מלעיל של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\leq M }[/math]
    • [math]\displaystyle{ m\in\mathbb{A} }[/math] נקרא המינימום של A או האיבר הקטן ביותר של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\geq M }[/math]
    • [math]\displaystyle{ m\in\mathbb{R} }[/math] נקרא חסם מלרע של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\geq M }[/math]


  • כמו כן:
    • אם יש איבר קטן ביותר בקבוצת חסמי המלעיל של A הוא נקרא החסם העליון של A, או הסופרמום של A ומסומן [math]\displaystyle{ \sup(A) }[/math]
    • אם יש איבר גדול ביותר בקבוצת חסמי המלרע של A הוא נקרא החסם התחתון של A, או האינפימום של A ומסומן [math]\displaystyle{ \inf(A) }[/math]


פרק 2 - סדרות

פרק 3 - טורים

פרק 4 - פונקציות ורציפות

פרק 5 - גזירות

פרק 6 - חקירה