חדוא 1 - ארז שיינר: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 42: שורה 42:


<videoflash>WdKqIf8xGeY</videoflash>
<videoflash>WdKqIf8xGeY</videoflash>
*בשדה הממשיים לכל קבוצה חסומה מלעיל יש חסם עליון, ולכל קבוצה חסומה מלרע יש חסם תחתון.
*בשדה הרציונאליים זה לא נכון; לקבוצה <math>A=\{x\in\mathbb{Q}|x^2<2\}</math> אין מספר רציונאלי קטן ביותר מבין חסמי המלעיל שלה.


<videoflash>7cz-S6GWg3Y</videoflash>
<videoflash>7cz-S6GWg3Y</videoflash>

גרסה מ־12:28, 15 באוקטובר 2020

88-132 חשבון אינפיניטיסימלי 1

מבחנים ופתרונות

סרטוני ותקציר ההרצאות

פרק 1 - מספרים וחסמים

קבוצות מספרים

  • הטבעיים [math]\displaystyle{ \mathbb{N}=\{1,2,3,...\} }[/math]
  • השלמים [math]\displaystyle{ \mathbb{Z}=\{0,-1,1,-2,2,...\} }[/math]
  • הרציונאליים [math]\displaystyle{ \mathbb{Q}=\left\{\frac{p}{n}|p\in\mathbb{Z},n\in\mathbb{N}\right\} }[/math]
  • הממשיים [math]\displaystyle{ \mathbb{R} }[/math], כל השברים העשרוניים כולל האינסופיים




  • לא קיים [math]\displaystyle{ x\in\mathbb{Q} }[/math] כך ש [math]\displaystyle{ x^2=2 }[/math].
  • במילים פשוטות, [math]\displaystyle{ \sqrt{2} }[/math] אינו רציונאלי (בהמשך נוכיח שיש מספר ממשי כזה).

חסמים

  • תהי [math]\displaystyle{ A\subseteq \mathbb{R} }[/math] אזי:
    • [math]\displaystyle{ M\in\mathbb{A} }[/math] נקרא המקסימום של A או האיבר הגדול ביותר של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\leq M }[/math]
    • [math]\displaystyle{ M\in\mathbb{R} }[/math] נקרא חסם מלעיל של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\leq M }[/math]
    • [math]\displaystyle{ m\in\mathbb{A} }[/math] נקרא המינימום של A או האיבר הקטן ביותר של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\geq M }[/math]
    • [math]\displaystyle{ m\in\mathbb{R} }[/math] נקרא חסם מלרע של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\geq M }[/math]


  • כמו כן:
    • אם יש איבר קטן ביותר בקבוצת חסמי המלעיל של A הוא נקרא החסם העליון של A, או הסופרמום של A ומסומן [math]\displaystyle{ \sup(A) }[/math]
    • אם יש איבר גדול ביותר בקבוצת חסמי המלרע של A הוא נקרא החסם התחתון של A, או האינפימום של A ומסומן [math]\displaystyle{ \inf(A) }[/math]



  • בשדה הממשיים לכל קבוצה חסומה מלעיל יש חסם עליון, ולכל קבוצה חסומה מלרע יש חסם תחתון.
  • בשדה הרציונאליים זה לא נכון; לקבוצה [math]\displaystyle{ A=\{x\in\mathbb{Q}|x^2\lt 2\} }[/math] אין מספר רציונאלי קטן ביותר מבין חסמי המלעיל שלה.


פרק 2 - סדרות

פרק 3 - טורים

פרק 4 - פונקציות ורציפות

פרק 5 - גזירות

פרק 6 - חקירה