חדוא 1 - ארז שיינר: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 63: שורה 63:


==פרק 2 - סדרות==
==פרק 2 - סדרות==
===הגדרת הגבול===


*הגדרת הגבול של סדרה:
*הגדרת הגבול של סדרה:
שורה 83: שורה 85:


<videoflash>U5RUHjrHVGI</videoflash>
<videoflash>U5RUHjrHVGI</videoflash>
*הגבול הוא יחיד
*מספר סופי של איברים לא משפיע על הגבול
*סדרה מתכנסת במובן הצר חסומה
===כלים לחישוב גבולות===
*סנדביץ' וחצי סדנביץ'
*<math>a_n\to 0 \iff |a_n|\to 0</math>
*חסומה כפול אפיסה היא אפיסה.
*מבחן המנה (הוכחה בסיכום הבא על [[אי-שוויון הממוצעים]]).
**תהי סדרה <math>a_n</math> המקיימת כי '''גבול''' המנה הוא <math>\left|\frac{a_{n+1}}{a_n}\right|\to L</math> אזי:
***אם <math>1<L\leq\infty</math> מתקיים כי <math>|a_n|\to\infty</math>
***אם <math>0\leq L<1</math> מתקיים כי <math>a_n\to 0</math>
***מתקיים כי <math>\sqrt[n]{|a_n|}\to L</math>
===אריתמטיקה של גבולות (חשבון גבולות)===


==פרק 3 - טורים==
==פרק 3 - טורים==

גרסה מ־08:24, 16 באוקטובר 2020

88-132 חשבון אינפיניטיסימלי 1

מבחנים ופתרונות

סרטוני ותקציר ההרצאות

פרק 1 - מספרים וחסמים

קבוצות מספרים

  • הטבעיים N={1,2,3,...}
  • השלמים Z={0,1,1,2,2,...}
  • הרציונאליים Q={pn|pZ,nN}
  • הממשיים R, כל השברים העשרוניים כולל האינסופיים




  • לא קיים xQ כך ש x2=2.
  • במילים פשוטות, 2 אינו רציונאלי (בהמשך נוכיח שיש מספר ממשי כזה).


חסמים

  • תהי AR אזי:
    • MA נקרא המקסימום של A או האיבר הגדול ביותר של A אם לכל aA מתקיים כי aM
    • MR נקרא חסם מלעיל של A אם לכל aA מתקיים כי aM
    • mA נקרא המינימום של A או האיבר הקטן ביותר של A אם לכל aA מתקיים כי aM
    • mR נקרא חסם מלרע של A אם לכל aA מתקיים כי aM


  • כמו כן:
    • אם יש איבר קטן ביותר בקבוצת חסמי המלעיל של A הוא נקרא החסם העליון של A, או הסופרמום של A ומסומן sup(A)
    • אם יש איבר גדול ביותר בקבוצת חסמי המלרע של A הוא נקרא החסם התחתון של A, או האינפימום של A ומסומן inf(A)



  • בשדה הממשיים לכל קבוצה לא ריקה וחסומה מלעיל יש חסם עליון, ולכל קבוצה לא ריקה וחסומה מלרע יש חסם תחתון.
  • בשדה הרציונאליים זה לא נכון; לקבוצה A={xQ|x2<2} אין מספר רציונאלי קטן ביותר מבין חסמי המלעיל שלה.



  • תהי AR ויהי MR אזי:
    • M הוא החסם העליון של A אם ורק אם M הוא חסם מלעיל של A ולכל מספר Mε<M קיים מספר aA כך ש a>Mε
    • m הוא החסם התחתון של A אם ורק אם m הוא חסם מלרע של A ולכל מספר m<m+ε קיים מספר aA כך ש a<m+ε


  • דוגמא: תהיינה A,BR חסומות מלעיל כך שA אינה מכילה חסמי מלעיל של B, אזי sup(A)sup(B)


פרק 2 - סדרות

הגדרת הגבול

  • הגדרת הגבול של סדרה:
  • תהי סדרה ממשית an ויהי מספר ממשי LR.
  • L הינו גבול הסדרה an (מסומן liman=L או anL) אם:
    • לכל סביבה של הגבול, קיים מקום בסדרה שאחריו כל איברי הסדרה נמצאים בסביבה הנתונה, כלומר:
    • לכל מרחק ε>0 קיים מקום NN כך שאחריו לכל n>N מתקיים כי |anL|<ε



  • נגדיר שan אם לכל M>0 קיים NN כך שלכל n>N מתקיים כי an>M
  • נגדיר שan אם an


  • טענה: תהי an אזי 1an0
  • טענה: תהי 0an0 אזי 1|an|



  • הגבול הוא יחיד
  • מספר סופי של איברים לא משפיע על הגבול
  • סדרה מתכנסת במובן הצר חסומה


כלים לחישוב גבולות

  • סנדביץ' וחצי סדנביץ'
  • an0|an|0
  • חסומה כפול אפיסה היא אפיסה.
  • מבחן המנה (הוכחה בסיכום הבא על אי-שוויון הממוצעים).
    • תהי סדרה an המקיימת כי גבול המנה הוא |an+1an|L אזי:
      • אם 1<L מתקיים כי |an|
      • אם 0L<1 מתקיים כי an0
      • מתקיים כי |an|nL


אריתמטיקה של גבולות (חשבון גבולות)

פרק 3 - טורים

פרק 4 - פונקציות ורציפות

פרק 5 - גזירות

פרק 6 - חקירה