שינויים

קפיצה אל: ניווט, חיפוש

88-101 חשיבה מתמטית

נוספו 34 בתים, 23:27, 9 ביולי 2011
*לוגיקן הלך לאכול במסעדת גורמה. בסיום הארוחה הוא ניגש אל המלצר ואמר לו: "בתחילת הארוחה אמרתי לך שתקבל טיפ אם תגיש את האוכל חם או אם האוכל יגיע קר אבל בזמן. כמו כן הטיפ שלך תלוי במידת אדיבותך, אם האוכל לא טעים ולא בררת איתי לגבי טעמו, לא תקבל טיפ. דבר אחד עשוי להציל את הטיפ שלך- אם האוכל יהיה קר וטעים ויגיע באיחור, תוכל לפצות אותי על ידי קינוח חינם. בעקבות כל זה, לא תקבל טיפ". הצרן את תנאי הלוגיקן לקבלת טיפ והוכח מה קרה בארוחה באמצעות העובדה שלא התקבל טיפ.
*חסם עליון של קבוצה הינו מספר שגדול מכל אחד מאיברי הקבוצה. הצרן את המשפט "מספר הקטן מחסם עליון בהכרח חסם עליון בעצמו". (אל תשתמש במושג חסם עליון בהגדרה או בקבוצת החסמים העליונים, השתמש ישירות בהגדרה.) (בוודאי חלקיכם יתהו האם יש טעות במשפט, זכרו: משפט אינו חייב להיות טואוטולוגיה או אפילו נכון על מנת להיות מוצרן לפסוק.)
*הצרן את ההגדרה הבאה: L הינו גבול של סדרה אינסופית a_n אם לכל מרחק שלא נבחר, יש מקום בסדרה כך שהחל ממנו והלאה כל איברי הסדרה קרובים לגבול עד כדי אותו מרחק שבחרנו.
*שלול את ההגדרה הקודמת.
*מצא שני פסוקים שונים במהותם אשר שקולים לכך שלסדרה לא יהיה גבול.
*הצרן: למדתי היטב למבחן, ואף על פי כן נכשלתי בו.
*נניח והמשפט הבא הוא אמת "כאשר אני בכושר אני מסוגל לרוץ 10 קילומטר".
לפסוקים שיש בהם כמתים אי אפשר לבנות טבלאות אמת, משום שלצד האטומים המקבלים רק שני ערכי אמת אפשריים, יש בהם משתנים העשויים לעבור על-פני מספר אינסופי של אפשרויות. לכן הלוגיקה המטפלת בפסוקים עם כמתים (הנקראת "לוגיקה מסדר ראשון") מורכבת יותר מן הלוגיקה הפסוקית, ויש לה יכולת ביטוי רחבה יותר. גם בלוגיקה זו אומרים ששני פסוקים <math>\ \varphi, \psi</math> הם שקולים אם <math>\ \varphi \leftrightarrow \psi</math> מקבל ערך אמת לכל הצבה של המשתנים המעורבים.
 
הכמתים היסודיים מאפשרים לנסח טענות סטנדרטיות נוספות.
* <math> \exists x : (P(x) \wedge \forall y : (P(y) \rightarrow x=y))</math> -- "קיים x המקיים את התכונה P, ובנוסף, כל y המקיים את התכונה P שווה ל-x". כלומר: "קיים x יחיד המקיים את התכונה P". לפעמים מקצרים את הפסוק הזה וכותבים <math>\ \exists! x: P(x)</math>. אפשר לראות בצירוף "<math>\ \exists !</math>" כמת שלישי, למרות שכאמור לעיל ניתן להגדיר אותו באמצעות שני הכמתים האחרים (בנוכחות פרדיקט השוויון).
 
לפעמים רוצים לומר שיש אינסוף מספרים המקיימים תכונה מסויימת. אפשר לעשות זאת כך:
* <math>\ \forall n : \exists x : ((x>n) \wedge P(x))</math>: "לכל n יש x גדול ממנו המקיים את התכונה". אם היה רק מספר סופי של מספרים המקיימים את התכונה המדוברת, אז הפסוק היה שקרי משום שאפשר היה לבחור בתור n את המספר הגדול ביותר.
 
מאחורי כל כמת מסתתרת "קבוצה אוניברסלית", שהיא קבוצת הערכים המותרים עבור המשתנה הצמוד לכמת (מספרים ממשיים, מספרים טבעיים, פירות, אנשים). בדרך כלל הקבוצה הזו מובנת מההקשר; אם לא, יש לציין במפורש מהו טווח הערכים המתאים. לצרכי נוחות, מרשים גמישות במבנה הפסוקים, כך שאפשר יהיה לכמת "כימות יחסי". לדוגמא, מותר לכתוב
* <math>\ \forall x>0: \exists y>0: y<x</math> - "לכל מספר חיובי x יש מספר חיובי y הקטן ממנו", כלומר "אין מספר חיובי קטן ביותר", בתור קיצור לכתיבה המלאה <math>\ \forall x: ((x>0) \rightarrow (\exists y: ((y>0) \wedge (y<x))))</math> - "לכל מספר x, אם הוא חיובי, אז קיים מספר y שהוא חיובי וקטן מ-x".
 
=== שלילת כמתים ===
כבר למדנו כיצד לשלול פסוק שבו הפעולה האחרונה היא אחד הקשרים. כדי לשלול פסוק שבו הפעולה האחרונה היא כמת מפעילים שתי הבחנות פשוטות, שנציג כדוגמאות:
. בפועל, שני הכמתים נמצאים בשימוש מתמטי תמידי.
הכמתים היסודיים מאפשרים לנסח טענות סטנדרטיות נוספות.
* <math> \exists x : (P(x) \wedge \forall y : (P(y) \rightarrow x=y))</math> -- "קיים x המקיים את התכונה P, ובנוסף, כל y המקיים את התכונה P שווה ל-x". כלומר: "קיים x יחיד המקיים את התכונה P". לפעמים מקצרים את הפסוק הזה וכותבים <math>\ \exists! x: P(x)</math>. אפשר לראות בצירוף "<math>\ \exists !</math>" כמת שלישי, למרות שכאמור לעיל ניתן להגדיר אותו באמצעות שני הכמתים האחרים (בנוכחות פרדיקט השוויון).
לפעמים רוצים לומר שיש אינסוף מספרים המקיימים תכונה מסויימת. אפשר לעשות זאת כך: * <math>\ \forall n הצרן את ההגדרה הבאה: \exists x : ((x>n) \wedge P(x))</math>: "L הינו גבול של סדרה אינסופית a_n אם לכל n מרחק שלא נבחר, יש x גדול מקום בסדרה כך שהחל ממנו המקיים והלאה כל איברי הסדרה קרובים לגבול עד כדי אותו מרחק שבחרנו.*שלול את התכונה"ההגדרה הקודמת. אם היה רק מספר סופי של מספרים המקיימים את התכונה המדוברת, אז הפסוק היה שקרי משום שאפשר היה לבחור בתור n את המספר הגדול ביותר*מצא שני פסוקים שונים במהותם אשר שקולים לכך שלסדרה לא יהיה גבול.
מאחורי כל כמת מסתתרת "קבוצה אוניברסלית", שהיא קבוצת הערכים המותרים עבור המשתנה הצמוד לכמת (מספרים ממשיים, מספרים טבעיים, פירות, אנשים). בדרך כלל הקבוצה הזו מובנת מההקשר; אם לא, יש לציין במפורש מהו טווח הערכים המתאים. לצרכי נוחות, מרשים גמישות במבנה הפסוקים, כך שאפשר יהיה לכמת "כימות יחסי". לדוגמא, מותר לכתוב
* <math>\ \forall x>0: \exists y>0: y<x</math> - "לכל מספר חיובי x יש מספר חיובי y הקטן ממנו", כלומר "אין מספר חיובי קטן ביותר", בתור קיצור לכתיבה המלאה <math>\ \forall x: ((x>0) \rightarrow (\exists y: ((y>0) \wedge (y<x))))</math> - "לכל מספר x, אם הוא חיובי, אז קיים מספר y שהוא חיובי וקטן מ-x".
== הוכחה ==