שינויים

קפיצה אל: ניווט, חיפוש

משתמש:אור שחף/133 - תרגול/29.5.11

נוספו 5 בתים, 15:41, 20 באוקטובר 2011
/* סכומי טורים */
'''תזכורת:''' (אינטגרציה איבר איבר בסדרות) אם <math>f_n</math> סדרת פונקציות רציפות המתכנסות במ"ש לפונקציה f ב-<math>[a,b]</math>, אז f אינטגרבילית ומתקיים <math>\lim_{n\to\infty}\int\limits_a^b f_n=\int\limits_a^b f</math>. באופן דומה ננסח עבור גזירה איבר-איבר בסדרות: <math>f_n</math> סדרת פונקציות גזירות ורציפות ב-<math>[a,b]</math> המתכנסת בנקודה אחת לפחות <math>x_0\in[a,b]</math> ל-<math>f(x_0)</math>. אם <math>f_n'</math> סדרת פונקציות המתכנסות במ"ש ב-<math>[a,b]</math> אז <math>f</math> גזירה <math>\lim_{n\to\infty} f_n'(x)=f'(x)=\left(\lim_{n\to\infty}f_n(x)\right)'</math>.
באופן דומה נגדיר עבור טורים. עבור אינטגרציה, לדוגמה: יהי <math>\sum_{n=1}^\infty f_n(x)</math> טור של פונקציות רציפות ב-<math>[a,b]</math> המתכנס במ"ש בקטע לפונקצית סכום <math>S(x)</math>, אזי טור המספרים מתכנס ומתקיים <math>\sum_{n=01}^\infty \int\limits_a^b f_n=\int\limits_a^b \sum_{n=01}^\inftyf_n=\int\limits_a^b S</math>.
גזירה איבר איבר של טורי פונקציות: יהיו <math>f_n</math> פונציות גזירות רציפות ב-<math>[a,b]</math> כך שהטור <math>\sum_{n=01}^\infty f_n(x)</math> מתכנס ב-<math>x_0\in[a,b]</math> ל-<math>S(x_0)</math> . אם טור הנגזרות <math>\sum_{n=01}^\infty f_n'(x)</math> מתכנס במידה שווה בקטע אז מתקיים <math>\sum_{n=01}^\infty f_n'(x)=S'(x)=\left(\sum_{n=01}^\infty f_n(x)\right)'</math>.
==דוגמה 1==