שינויים

קפיצה אל: ניווט, חיפוש

הלמה של צורן

אין שינוי בגודל, 13:17, 9 באוגוסט 2015
/* שימושים */
ללמה של צורן שימושים רבים בכל תחומי המתמטיקה. נדגים כמה מהם. הקורא מוזמן להתמקד באלו העוסקות בתחומים המוכרים לו, ויכול לדלג ללא חשש.
 
=== עקרון המקסימום של האוסדורף ===
 
אוסף השרשראות בקבוצה סדורה חלקית, סדור בעצמו על-ידי יחס ההכלה. שרשרת היא '''מקסימלית''' אם אינה מוכלת באף שרשרת אחרת.
 
'''למה'''. איחוד של שרשרת של שרשראות הוא בעצמו שרשרת. אכן, תהי <math>\ \Lambda = \{A_{\alpha}\}</math> שרשרת של שרשראות (היינו, כל <math>\ A_{\alpha}</math> היא שרשרת, ולכל <math>\ \alpha,\beta</math> מתקיים <math>\ A_{\alpha} \subseteq A_{\beta}</math> או <math>\ A_{\beta} \subseteq A_{\alpha}</math>). יהיו <math>\ x,y \in \bigcup \Lambda</math>, אז יש <math>\ \alpha, \beta</math> כך ש-<math>\ x\in A_{\alpha}, y \in A_{\beta}</math>. נניח, בלי הגבלת הכלליות, ש-<math>\ A_{\alpha} \subseteq A_{\beta}</math>. אז <math>\ x,y \in A_{\beta}</math>, והם נתנים להשוואה משום ש-<math>\ A_{\beta}</math> שרשרת.
 
'''עקרון המקסימום של האוסדורף'''. בכל קבוצה סדורה חלקית יש שרשרת מקסימלית.
 
'''הוכחה'''. לפי הלמה, אוסף השרשראות מקיים את תנאי הלמה של צורן, ולכן יש בו איבר מקסימלי.
 
עקרון המקסימום הוא משפט שימושי ביותר, שאפשר להוכיח ממנו את כל הטענות האחרות בדף הזה. למעשה, אפשר להוכיח ממנו בקלות את הלמה של צורן עצמה:
 
'''טענה'''. הלמה של צורן נובעת מעקרון המקסימום. אכן, קח שרשרת מקסימלית, A. לפי ההנחה יש לה חסם מלעיל, a, שהוא איבר מקסימלי, משום שאם יש <math>\ a < b</math> אז <math>\ A \cup \{b\}</math> היתה שרשרת גדולה יותר.
 
=== עקרון הסדר הטוב ===
 
'''משפט'''. על כל קבוצה X קיים סדר טוב.
 
'''הוכחה'''. נסמן ב-<math>\ \Omega</math> את אוסף הזוגות הסדורים <math> (A,R)</math> כאשר <math> A \subseteq X</math> ו-<math> R \subseteq A \times A</math> יחס סדר טוב על A. מגדירים על <math> \Omega</math> יחס סדר: <math> (A,R) \leq (A',R')</math> אם <math> A \subseteq A'</math> ו-<math> R = (A \times A) \cap R'</math>. לכל שרשרת <math> (A_{\lambda},R_{\lambda})</math> ב-<math> \Omega</math>, האיחוד <math> (\bigcup A_{\lambda}, \bigcup R_{\lambda})</math> הוא קבוצה סדורה היטב, ולכן איבר של <math> \Omega</math> שהוא חסם מלעיל של השרשרת. לפי הלמה של צורן, יש ל-<math> \Omega</math> איבר מקסימלי, <math> (Y,S)</math>. אם יש איבר <math> x \in X \setminus Y</math>; אם נעשיר את <math> Y</math> בקביעה ש-<math> y \leq x</math> לכל <math> y\in Y</math>, נקבל סדר טוב על <math> Y \cup \{x\}</math>, בסתירה למקסימליות של <math> (Y,S)</math>. מכאן ש-<math> Y = X</math>, וסיימנו.
=== יחס הסדר בין עוצמות הוא לינארי ===
לפי הלמה של צורן, יש ב-X קבוצה מקסימלית, שנסמן ב-B. היא בלתי-תלויה לינארית (משום שכל הקבוצות ב-X כאלה). נשאר להראות שהיא פורשת את המרחב V. יהי <math>\ v\in V</math>. אם הוקטור v אינו נפרש על-ידי B, אז הקבוצה <math>\ B \cup \{v\}</math> בלתי-תלויה לינארית, וזו סתירה למקסימליות של B. לכן כל וקטור נפרש על-ידי B, ומכאן ש-B בסיס.
 
=== עקרון המקסימום של האוסדורף ===
 
אוסף השרשראות בקבוצה סדורה חלקית, סדור בעצמו על-ידי יחס ההכלה. שרשרת היא '''מקסימלית''' אם אינה מוכלת באף שרשרת אחרת.
 
'''למה'''. איחוד של שרשרת של שרשראות הוא בעצמו שרשרת. אכן, תהי <math>\ \Lambda = \{A_{\alpha}\}</math> שרשרת של שרשראות (היינו, כל <math>\ A_{\alpha}</math> היא שרשרת, ולכל <math>\ \alpha,\beta</math> מתקיים <math>\ A_{\alpha} \subseteq A_{\beta}</math> או <math>\ A_{\beta} \subseteq A_{\alpha}</math>). יהיו <math>\ x,y \in \bigcup \Lambda</math>, אז יש <math>\ \alpha, \beta</math> כך ש-<math>\ x\in A_{\alpha}, y \in A_{\beta}</math>. נניח, בלי הגבלת הכלליות, ש-<math>\ A_{\alpha} \subseteq A_{\beta}</math>. אז <math>\ x,y \in A_{\beta}</math>, והם נתנים להשוואה משום ש-<math>\ A_{\beta}</math> שרשרת.
 
'''עקרון המקסימום של האוסדורף'''. בכל קבוצה סדורה חלקית יש שרשרת מקסימלית.
 
'''הוכחה'''. לפי הלמה, אוסף השרשראות מקיים את תנאי הלמה של צורן, ולכן יש בו איבר מקסימלי.
 
עקרון המקסימום הוא משפט שימושי ביותר, שאפשר להוכיח ממנו את כל הטענות האחרות בדף הזה. למעשה, אפשר להוכיח ממנו בקלות את הלמה של צורן עצמה:
 
'''טענה'''. הלמה של צורן נובעת מעקרון המקסימום. אכן, קח שרשרת מקסימלית, A. לפי ההנחה יש לה חסם מלעיל, a, שהוא איבר מקסימלי, משום שאם יש <math>\ a < b</math> אז <math>\ A \cup \{b\}</math> היתה שרשרת גדולה יותר.
 
=== עקרון הסדר הטוב ===
 
'''משפט'''. על כל קבוצה X קיים סדר טוב.
 
'''הוכחה'''. נסמן ב-<math>\ \Omega</math> את אוסף הזוגות הסדורים <math> (A,R)</math> כאשר <math> A \subseteq X</math> ו-<math> R \subseteq A \times A</math> יחס סדר טוב על A. מגדירים על <math> \Omega</math> יחס סדר: <math> (A,R) \leq (A',R')</math> אם <math> A \subseteq A'</math> ו-<math> R = (A \times A) \cap R'</math>. לכל שרשרת <math> (A_{\lambda},R_{\lambda})</math> ב-<math> \Omega</math>, האיחוד <math> (\bigcup A_{\lambda}, \bigcup R_{\lambda})</math> הוא קבוצה סדורה היטב, ולכן איבר של <math> \Omega</math> שהוא חסם מלעיל של השרשרת. לפי הלמה של צורן, יש ל-<math> \Omega</math> איבר מקסימלי, <math> (Y,S)</math>. אם יש איבר <math> x \in X \setminus Y</math>; אם נעשיר את <math> Y</math> בקביעה ש-<math> y \leq x</math> לכל <math> y\in Y</math>, נקבל סדר טוב על <math> Y \cup \{x\}</math>, בסתירה למקסימליות של <math> (Y,S)</math>. מכאן ש-<math> Y = X</math>, וסיימנו.
=== יש על-מסנן לא ראשי ===
477
עריכות