משתמש:אור שחף/133 - רשימת משפטים: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
שורה 2: שורה 2:
* <math>c</math> הוא קבוע.
* <math>c</math> הוא קבוע.
* <math>f,g</math> פונקציות.
* <math>f,g</math> פונקציות.
* כל אחת מהקבוצות הבאות היא קבוצת כל הפונקציות המקיימות תכונה מסויימת בקבוצה <math>A</math>:
* הקטע הנתון הוא הקטע הסגור <math>[a,b]</math>.
:* <math>C(A)</math> היא קבוצת כל הפונקציות הרציפות ב-<math>A</math>.
* אם מצויין שלפונקציה יש תכונה מסויימת אזי הכוונה לכך שהתכונה מתקיימת בקטע הנתון (למשל: "<math>f</math> חסומה" = "<math>f</math> חסומה ב-<math>[a,b]</math>").
:* <math>\mbox{Mo}(A)</math> - מונוטוניות.
::* <math>\mbox{MO}(A)</math> - מונוטוניות במובן הצר.
:* <math>\mbox{Bo}(A)</math> - חסומות.
::* החסם העליון של פונקציה ב-<math>\mbox{Bo}(I)</math> הוא <math>M</math> והתחתון - <math>m</math>.
:* <math>\mbox{Po}(A)</math> - אי-שליליות.
::* <math>\mbox{PO}(A)</math> - חיוביות.
:* <math>\mbox{INT}(A)</math> - אינטגרביליות.
::* <math>\mbox{Int}(A)</math> - אינטגרביליות מקומית.
* אם קיימת לפונקציה פונקציה קדומה היא תסומן בעזרת האות הגדולה המתאימה (למשל, הפונקציה הקדומה של <math>f</math> היא <math>F</math>).
* <math>P</math> היא חלוקה <math>\{x_0,x_1,\dots,x_n\}</math> של הקטע הנתון כך ש-<math>a=x_0<x_1<\dots<x_n=b</math>.
* <math>P</math> היא חלוקה <math>\{x_0,x_1,\dots,x_n\}</math> של הקטע הנתון כך ש-<math>a=x_0<x_1<\dots<x_n=b</math>.
:* <math>Q</math> היא העדנה של <math>P</math>.
:* <math>Q</math> היא העדנה של <math>P</math>.
:* <math>P'=\{a,c_1,c_2,\dots,c_n,b\}</math> היא חלוקה נוספת של הקטע הנוצרת מהחלוקה <math>P</math> כך ש-<math>\forall1\le k\le n:\ c_k\in[x_{k-1},x_k]</math>.
:* <math>P'=\{a,c_1,c_2,\dots,c_n,b\}</math> היא חלוקה נוספת של הקטע הנוצרת מהחלוקה <math>P</math> כך ש-<math>\forall1\le k\le n:\ c_k\in[x_{k-1},x_k]</math> ו-<math>\forall 2\le k\le n:\ c_{k-1}\ne c_k</math>.


=אינטגרלים=
=אינטגרלים=
* אם <math>F</math> ו-<math>G</math> קדומות ל-<math>f</math> בנקודה כלשהי אז קיים <math>c</math> כך ש-<math>F(x)=G(x)+c</math>.
* אם <math>F</math> ו-<math>G</math> קדומות ל-<math>f</math> בנקודה כלשהי אז קיים <math>c</math> כך ש-<math>F(x)=G(x)+c</math>.
* <math>\forall f\in\mbox{Bo}([a,b]):\ m(b-a)\le\underline S(f,P)\le\overline S(f,P)\le M(b-a)</math>.
* אם <math>f</math> חסומה ב-<math>[a,b]</math> אזי <math>m(b-a)\le\underline S(f,P)\le\overline S(f,P)\le M(b-a)</math>.
* אם <math>|Q|=|P|+r</math> {{הערה|(כלומר, <math>Q</math> מתקבלת מ-<math>P</math> ע"י הוספת <math>r</math> נקודות)}} ו-<math>f\in\mbox{Bo}([a,b])</math> אזי <math>0\le\overline S(f,P)-\overline S(f,Q)\le r\lambda(P)\Omega</math> וכן <math>0\le\underline S(f,Q)-\underline S(f,P)\le r\lambda(P)\Omega</math>.
* אם <math>|Q|=|P|+r</math> {{הערה|(כלומר, <math>Q</math> מתקבלת מ-<math>P</math> ע"י הוספת <math>r</math> נקודות)}} ו-<math>f</math> חסומה בקטע אזי <math>0\le\overline S(f,P)-\overline S(f,Q)\le r\lambda(P)\Omega</math> וכן <math>0\le\underline S(f,Q)-\underline S(f,P)\le r\lambda(P)\Omega</math>.
* לכל חלוקה <math>Q</math> של הקטע הנתון (לאו דווקא העדנה של <math>P</math>), אם <math>f\in\mbox{Bo}([a,b])</math> אזי <math>\underline S(f,P)\le\overline S(f,Q)</math>.
* לכל חלוקה <math>Q</math> של הקטע הנתון (לאו דווקא העדנה של <math>P</math>), אם <math>f</math> חסומה בקטע אזי <math>\underline S(f,P)\le\overline S(f,Q)</math>.
* לכל <math>f\in\mbox{INT}([a,b])</math> מתקיים <math>\underline\int_a^b f\le\overline{\int}_a^b f</math>.
* לכל <math>f</math> אינטגרבילית מתקיים <math>\underline\int_a^b f\le\overline{\int}_a^b f</math>.
* תהי <math>f\in\mbox{Bo}([a,b])</math>. אזי <math>\underline\int_a^b f=\lim_{\lambda(P)\to0}\underline S(f,P)</math> וגם <math>\overline{\int}_a^b f=\lim_{\lambda(P)\to0}\overline S(f,P)</math>.
* תהי <math>f</math> חסומה. אזי <math>\underline\int_a^b f=\lim_{\lambda(P)\to0}\underline S(f,P)</math> וגם <math>\overline{\int}_a^b f=\lim_{\lambda(P)\to0}\overline S(f,P)</math>.
* נניח ש-<math>f\in\mbox{Bo}([a,b])</math>. <math>f\in\mbox{INT}([a,b])</math> אם"ם <math>\lim_{\lambda(P)\to0}\overline S(f,P)-\underline S(f,P)=0</math>.
* נניח ש-<math>f</math> חסומה. <math>f</math> אינטגרבילית אם"ם <math>\lim_{\lambda(P)\to0}\overline S(f,P)-\underline S(f,P)=0</math>.
* נניח ש-<math>f\in\mbox{Bo}([a,b])</math>. <math>f\in\mbox{INT}([a,b])</math> אם"ם לכל <math>\varepsilon>0</math> קיימת חלוקה <math>P</math> של <math>[a,b]</math> כך ש-<math>\overline S(f,P)-\underline S(f,P)<\varepsilon</math>.
* נניח ש-<math>f</math> חסומה. <math>f</math> אינטגרבילית אם"ם לכל <math>\varepsilon>0</math> קיימת חלוקה <math>P</math> של <math>[a,b]</math> כך ש-<math>\overline S(f,P)-\underline S(f,P)<\varepsilon</math>.
* אם <math>f\in C([a,b])</math> אז <math>f\in\mbox{INT}([a,b])</math>.
* אם <math>f</math> רציפה אז <math>f</math> אינטגרבילית.
:* {{הערה|הכללה:}} אם <math>f\in C((a,b))\cap\mbox{Bo}((a,b))</math> אזי <math>f\in\mbox{INT}([a,b])</math>.
:* {{הערה|הכללה:}} אם <math>f</math> רציפה וחסומה בקטע הפתוח <math>(a,b)</math> אזי <math>f</math> אינטגרבילית.
::* {{הערה|הכללה להכללה:}} אם <math>f\in C([a,b]\setminus A)\cap\mbox{Bo}([a,b])</math> כאשר <math>A</math> קבוצה סופית אזי <math>f\in\mbox{INT}([a,b])</math>.
::* {{הערה|הכללה להכללה:}} אם <math>f</math> רציפה בקטע בכל נקודה למעט במספר סופי של נקודות והיא חסומה אזי <math>f</math> אינטגרבילית.
* אם <math>f\in\mbox{Mo}([a,b])</math> אז <math>f\in\mbox{INT}([a,b])</math>.  
* אם <math>f</math> מונוטונית אזי היא אינטגרבילית.  
* נניח ש-<math>a<c<b</math>. אזי <math>f\in\mbox{INT}([a,b])\cap\Big(\mbox{INT}([a,c])\cup\mbox{INT}([c,b])\Big)</math> אם"ם <math>f\in\mbox{INT}([a,b])</math>, ואם כן אז <math>\int\limits_a^b f=\int\limits_a^c f+\int\limits_c^b f</math>.
* נניח ש-<math>a<c<b</math>. אזי <math>f</math> אינטגרבילית ב-<math>[a,b]</math>, ב-<math>[a,c]</math> וב-<math>[c,b]</math> אם"ם היא אינטגרבילית ב-<math>[a,b]</math>, ואם כן אז <math>\int\limits_a^b f=\int\limits_a^c f+\int\limits_c^b f</math>.
:* {{הערה|הכללה:}} עבור <math>f</math> כנ"ל ו-<math>a=x_0,x_1,\dots,x_n=b</math> (הנקודות לאו דווקא מסודרות בסדר עולה) מתקיים <math>\int\limits_a^b f=\sum_{k=1}^n\int\limits_{x_{k-1}}^{x_k} f</math>.
:* {{הערה|הכללה:}} עבור <math>f</math> כנ"ל ו-<math>a=x_0,x_1,\dots,x_n=b</math> (הנקודות לאו דווקא מסודרות בסדר עולה) מתקיים <math>\int\limits_a^b f=\sum_{k=1}^n\int\limits_{x_{k-1}}^{x_k} f</math>.
* אם <math>f\in\mbox{Bo}([a,b])</math> אז <math>\underline S(f,P)\le S(f,P,P')\le\overline S(f,P)</math>. יתר על כן, <math>\underline S(f,P)=\inf_{P'}S(f,P,P')</math> ו-<math>\overline S(f,P)=\sup_{P'}S(f,P,P')</math>.
* אם <math>f</math> חסומה אז <math>\underline S(f,P)\le S(f,P,P')\le\overline S(f,P)</math>. יתר על כן, <math>\underline S(f,P)=\inf_{P'}S(f,P,P')</math> ו-<math>\overline S(f,P)=\sup_{P'}S(f,P,P')</math>.
* הגדרות האינטגרל לפי דרבו ולפי רימן שקולות.
* הגדרות האינטגרל לפי דרבו ולפי רימן שקולות.
* '''לינאריות:''' <math>\forall f,g\in\mbox{INT}([a,b]):\ \int\limits_a^b f+cg=\int\limits_a^b  f+c\int\limits_a^b g</math>.
* '''לינאריות:''' עבור <math>f,g</math> אינטגרביליות מתקיים <math>\int\limits_a^b f+cg=\int\limits_a^b  f+c\int\limits_a^b g</math>.
* '''מונוטוניות:''' אם <math>f,g\in\mbox{INT}([a,b])</math> וכן <math>\forall x\in[a,b]:\ f(x)\ge g(x)</math> אז <math>\int\limits_a^b f\ge\int\limits_a^b g</math>.
* '''מונוטוניות:''' אם <math>f,g</math> אינטגרביליות וכן <math>\forall x\in[a,b]:\ f(x)\ge g(x)</math> אזי <math>\int\limits_a^b f\ge\int\limits_a^b g</math>.
:* '''חיוביות:''' בפרט מתקיים שאם <math>f\in\mbox{INT}([a,b])\cap\mbox{Po}([a,b])</math> אזי <math>\int\limits_a^b f\ge0</math>.
:* '''חיוביות:''' בפרט מתקיים שאם <math>f</math> אינטגרביליות ואי-שלילית אזי <math>\int\limits_a^b f\ge0</math>.
* '''הכללה לאי-שיוויון המשולש:''' אם <math>|f|\in\mbox{INT}([a,b])</math> אז <math>f\in\mbox{INT}([a,b])</math> ו-<math>\left|\int\limits_a^b f\right|\le\int\limits_a^b |f|</math>.
* '''הכללה לאי-שיוויון המשולש:''' אם <math>|f|</math> אינטגרבילית אז <math>f</math> אינטגרבילית ו-<math>\left|\int\limits_a^b f\right|\le\int\limits_a^b |f|</math>.
* אם <math>f\in\mbox{INT}([a,b])\cap\mbox{Bo}([a,b])</math> אז <math>m(b-a)\le\int\limits_a^b f\le M(b-a)</math>.
* אם <math>f</math> אינטגרבילית וחסומה אז <math>m(b-a)\le\int\limits_a^b f\le M(b-a)</math>.
:* {{הערה|מקרה פרטי:}} אם <math>\forall x\in[a,b]:\ |f(x)|\le M</math> ו-<math>f\in\mbox{INT}([a,b])</math> אז <math>\left|\int\limits_a^b f\right|\le M(b-a)</math>.
:* {{הערה|מקרה פרטי:}} אם <math>\forall x\in[a,b]:\ |f(x)|\le M</math> ו-<math>f</math> אינטגרבילית אז <math>\left|\int\limits_a^b f\right|\le M(b-a)</math>.
::* {{הערה|מקרה פרטי:}} אם <math>f(x)=M</math> (פונקציה קבועה) אז <math>\int\limits_a^b f=M(b-a)</math>.
::* {{הערה|מקרה פרטי:}} אם <math>f(x)=M</math> (פונקציה קבועה) אז <math>\int\limits_a^b f=M(b-a)</math>.
* '''המשפט היסודי של חשבון אינטגרלי:''' תהי <math>f\in\mbox{INT}([a,b])</math> ותהי <math>F</math> כך ש-<math>\forall x\in[a,b]:\ F(x):=\int\limits_a^x f</math>. אזי <math>F\in C([a,b])</math> וכן לכל נקודה ב-<math>[a,b]</math> שבה <math>f</math> רציפה, <math>F</math> קדומה ל-<math>f</math> (כלומר, <math>F</math> גזירה ב-<math>[a,b]</math> ו-<math>F'=f</math>).
* '''המשפט היסודי של חשבון אינטגרלי:''' תהי <math>f</math> אינטגרבילית ותהי <math>F</math> כך ש-<math>\forall x\in[a,b]:\ F(x):=\int\limits_a^x f</math>. אזי <math>F</math> רציפה וכן לכל נקודה ב-<math>[a,b]</math> שבה <math>f</math> רציפה, <math>F</math> קדומה ל-<math>f</math> (כלומר, <math>F</math> גזירה ב-<math>[a,b]</math> ו-<math>F'=f</math>).
* '''נוסחת ניוטון-לייבניץ:''' תהי <math>f\in C([a,b])</math>. אזי <math>\int\limits_a^b f=[F(x)]_{x=a}^b=F(b)-F(a)</math>.
* '''נוסחת ניוטון-לייבניץ:''' תהי <math>f</math> רציפה. אזי <math>\int\limits_a^b f=[F(x)]_{x=a}^b=F(b)-F(a)</math>.
* לכל <math>f\in C([a,b])</math> יש פונקציה קדומה.
* לכל <math>f</math> רציפה יש פונקציה קדומה.
* '''אינטגרציה בחלקים:''' נניח כי <math>f',g'</math> רציפות. אזי <math>\int f(x)g(x)\mathrm dx=f(x)g(x)-\int f'(x)g(x)\mathrm dx</math>.
* '''אינטגרציה בחלקים:''' נניח כי <math>f',g'</math> רציפות. אזי <math>\int f(x)g(x)\mathrm dx=f(x)g(x)-\int f'(x)g(x)\mathrm dx</math>.
:* <math>\int\limits_a^b f\cdot g'=[f(x)g(x)]_{x=a}^b-\int\limits_a^b f'\cdot g</math>
:* <math>\int\limits_a^b f\cdot g'=[f(x)g(x)]_{x=a}^b-\int\limits_a^b f'\cdot g</math>
שורה 49: שורה 40:
:* <math>\int\limits_a^b f(g(x))g'(x)\mathrm dx=\int\limits_{g(a)}^{g(b)}f(g(x))\mathrm dg(x)</math>
:* <math>\int\limits_a^b f(g(x))g'(x)\mathrm dx=\int\limits_{g(a)}^{g(b)}f(g(x))\mathrm dg(x)</math>
* כל פונקציה רציונלית <math>\frac pq</math> כך ש-<math>\deg(p)<\deg(q)</math> ניתנת לפירוק יחיד כסכום של שברים חלקיים <math>\frac A{(x-x_0)^n}+\frac{Bx+c}{(x^2+bx+c)^k}</math> כאשר <math>A,B,C,x_0\in\mathbb R</math> ול-<math>x^2+bx+c</math> אין שורשים ממשיים.
* כל פונקציה רציונלית <math>\frac pq</math> כך ש-<math>\deg(p)<\deg(q)</math> ניתנת לפירוק יחיד כסכום של שברים חלקיים <math>\frac A{(x-x_0)^n}+\frac{Bx+c}{(x^2+bx+c)^k}</math> כאשר <math>A,B,C,x_0\in\mathbb R</math> ול-<math>x^2+bx+c</math> אין שורשים ממשיים.
* נפח גוף הסיבוב הנוצר מסיבוב השטח שמתחת ל-<math>f\in\mbox{Po}([a,b])</math> בין <math>a</math> ל-<math>b</math> סביב ציר ה-<math>x</math> הוא <math>\int\limits_a^b \pi f^2</math>.
* נפח גוף הסיבוב הנוצר מסיבוב השטח שמתחת ל-<math>f</math> אי-שלילית בין <math>a</math> ל-<math>b</math> סביב ציר ה-<math>x</math> הוא <math>\int\limits_a^b \pi f^2</math>.
* הממוצע של <math>f\in C([a,b])</math> בקטע <math>[a,b]</math> הוא <math>\frac1{b-a}\int\limits_a^b f</math>.
* אם <math>f</math> רציפה אז הממוצע שלה בקטע <math>[a,b]</math> הוא <math>\frac1{b-a}\int\limits_a^b f</math>.
* אורך הגרף של <math>f\in C([a,b])</math> בקטע <math>[a,b]</math> הוא <math>\int\limits_a^b\sqrt{1+f'(x)^2}\mathrm dx</math>.
* אם <math>f</math> בעלת גזירה אז אורך הגרף שלה בקטע <math>[a,b]</math> הוא <math>\int\limits_a^b\sqrt{1+f'(x)^2}\mathrm dx</math>.
* שטח המעטפת (ללא הבסיסים) של גוף סיבוב הנוצר מסיבוב הגרף של <math>f\in C([a,b])</math> סביב ציר ה-<math>x</math> בקטע <math>[a,b]</math> הוא <math>\int\limits_a^b 2\pi f(x)\sqrt{1+f'(x)^2}\mathrm dx</math>.
* שטח המעטפת (ללא הבסיסים) של גוף סיבוב הנוצר מסיבוב הגרף של <math>f</math> רציפה סביב ציר ה-<math>x</math> בקטע <math>[a,b]</math> הוא <math>\int\limits_a^b 2\pi f(x)\sqrt{1+f'(x)^2}\mathrm dx</math>.
<!--
* תהא <math>f</math> בעלת נגזרת <math>n</math>-ית רציפה. אזי <math>\int\limits_a^b f\approx\int\limits_a^b P_n</math> כאשר <math>P_n</math> הוא פיתוח טיילור מסדר <math>n</math> של <math>f</math> והשארית חסומה ע"י <math>\int\limits_a^b R_n=f^{(n+1)}(c)\frac{b^{n+2}-a^{n+2}}{(n+2)!}</math>.
* תהא <math>f\in C^n([a,b])</math>. אזי <math>\int\limits_a^b f\approx\int\limits_a^b P_n</math> כאשר <math>P_n</math> הוא פיתוח טיילור מסדר <math>n</math> של <math>f</math> והשארית חסומה ע"י <math>\int\limits_a^b R_n=\int\limits_a^b \frac{f^{(n+1)}(c)x^{n+1}}{(n+1)!}\mathrm dx</math>.
* תהא <math>f</math> בעלת נגזרת רציפה והחלוקה <math>P</math> היא חלוקה שווה כאשר לכל <math>k</math> מתקיים <math>\Delta x_k=h</math>. אזי <math>\int\limits_a^b f\approx h\sum_{k=1}^n f(x_k)</math> והשארית חסומה ע"י <math>\frac{b-a}2Mh</math> כאשר <math>M=\max_{x\in[a,b]}\left|f'(x)\right|</math>.
*  
* תהא <math>f</math> בעלת נגזרת שנייה רציפה והחלוקה <math>P</math> היא חלוקה שווה כאשר לכל <math>k</math> מתקיים <math>\Delta x_k=h</math>. אזי <math>\int\limits_a^b f\approx h\frac{f(x_0)+f(x_n)}2+h\sum_{k=1}^{n-1}f(x_k)</math> והשארית חסומה ע"י <math>\frac5{12}(b-a)Mh^2</math> כאשר <math>M=\max_{x\in[a,b]}\left|f''(x)\right|</math>.
-->
* תהא <math>f</math> בעלת נגזרת רביעית רציפה והחלוקה <math>P</math> היא חלוקה שווה כאשר לכל <math>k</math> מתקיים <math>\Delta x_k=h</math> ו-<math>n</math> זוגי. אזי <math>\int\limits_a^b f\approx\frac h3\left(f(x_0)+4\sum_{k=1}^{n/2} f(x_{2k-1})+2\sum_{k=1}^{n/2-1}f(x_{2k})+f(x_n)\right)</math> והשגיאה חסומה ע"י <math>\frac{b-a}{180}Mh^4</math> כאשר <math>M=\max_{x\in[a,b]}\left|f^{(4)}(x)\right|</math>.
* תהינה <math>f,g\in\mbox{INT}([a,\infty))</math>. אזי <math>f+cg\in\mbox{INT}([a,\infty))</math> ומתקיים <math>\int\limits_a^\infty f+cg=\int\limits_a^\infty f+c\int\limits_a^\infty g</math>.
* תהיינה <math>f,g</math> אינטגרביליות ב-<math>[a,\infty)</math>. אזי <math>f+cg</math> אינטגרבילית ב-<math>[a,\infty)</math> ומתקיים <math>\int\limits_a^\infty f+cg=\int\limits_a^\infty f+c\int\limits_a^\infty g</math>.
* תהא <math>f\in\mbox{Int}([a,\infty))</math> ויהי <math>b>a</math>. אזי <math>f\in\mbox{INT}([a,\infty))</math> אם"ם <math>f\in\mbox{INT}([b,\infty))</math> ואם כן <math>\int\limits_a^\infty f=\int\limits_a^b f+\int\limits_b^\infty f</math>.
* תהא <math>f</math> אינטגרבילית מקומית ב-<math>[a,\infty)</math> ויהי <math>b>a</math>. אזי <math>f</math> אינטגרבילית ב-<math>[a,\infty)</math> אם"ם <math>f</math> אינטגרבילית ב-<math>[b,\infty)</math> ואם כן <math>\int\limits_a^\infty f=\int\limits_a^b f+\int\limits_b^\infty f</math>.
* <math>f\in\mbox{Mo}_\text{up}([a,\infty))</math>. אזי <math>\lim_{x\to\infty} f(x)</math> קיים אם"ם <math>\sup_x f(x)<\infty</math> ואם כן <math>\lim_{x\to\infty} f(x)=\sup_{x>a} f(x)</math>.
* <math>f</math> מונוטונית עולה ב-<math>[a,\infty)</math>. אזי <math>\lim_{x\to\infty} f(x)</math> קיים אם"ם <math>\sup_x f(x)<\infty</math> ואם כן <math>\lim_{x\to\infty} f(x)=\sup_{x>a} f(x)</math>.
* <math>f\in\mbox{Int}([a,\infty))\cap\mbox{Po}([a,\infty))</math>. אזי <math>\int\limits_a^\infty f</math> מתכנס אם"ם האינטגרלים החלקיים <math>\int\limits_a^R f</math> חסומים מלעיל, ואם לא אז <math>\int\limits_a^\infty f=\infty</math>.
* <math>f</math> אי-שלילית ואינטגרבילית מקומית ב-<math>[a,\infty)</math>. אזי <math>\int\limits_a^\infty f</math> מתכנס אם"ם האינטגרלים החלקיים <math>\int\limits_a^R f</math> חסומים מלעיל, ואם לא אז <math>\int\limits_a^\infty f=\infty</math>.
* '''מבחן ההשוואה:''' נניח ש-<math>f,g\in\mbox{Int}([a,\infty))\cap\mbox{Po}([a,\infty))</math> וכן <math>\forall x\in[a,\infty):\ f(x)\le g(x)</math>. אם <math>\int\limits_a^\infty g</math> מתכנס אז <math>\int\limits_a^\infty f</math> מתכנס.
* '''מבחן ההשוואה:''' נניח ש-<math>f,g</math> אי-שליליות ואינטגרביליות מקומית ב-<math>[a,\infty)</math> וכן <math>\forall x\in[a,\infty):\ f(x)\le g(x)</math>. אם <math>\int\limits_a^\infty g</math> מתכנס אז <math>\int\limits_a^\infty f</math> מתכנס.
* '''מבחן ההשוואה הגבולי:''' <math>f,g\in\mbox{Int}([a,\infty))\cap\mbox{Po}([a,\infty))</math> וכן <math>\lim_{x\to\infty}\frac{f(x)}{g(x)}\in\mathbb R</math>. אם <math>\int\limits_a^\infty g</math> מתכנס אז <math>\int\limits_a^\infty f</math> מתכנס.
* '''מבחן ההשוואה הגבולי:''' <math>f,g</math> אי-שליליות ואינטגרביליות מקומית ב-<math>[a,\infty)</math> וכן <math>\lim_{x\to\infty}\frac{f(x)}{g(x)}\in\mathbb R</math>. אם <math>\int\limits_a^\infty g</math> מתכנס אז <math>\int\limits_a^\infty f</math> מתכנס.
:* {{הערה|מקרה פרטי:}} אם בפרט הגבול שונה מ-0 אז שני האינטגרלים מתכנסים ומתבדרים כאחד.
:* {{הערה|מקרה פרטי:}} אם בפרט הגבול שונה מ-0 אז שני האינטגרלים מתכנסים ומתבדרים כאחד.
* '''המבחן האינטגרלי לטורים:''' תהא <math>f\in\mbox{Po}([k,\infty))\cap\mbox{Mo}_\text{down}([k,\infty))\cap\mbox{Int}([k,\infty))</math> עבור <math>k\in\mathbb N</math> כלשהו. אזי <math>f\in\mbox{INT}([k,\infty))</math> אם"ם <math>\sum_{n=k}^\infty f(n)</math> מתכנס.
* '''המבחן האינטגרלי לטורים:''' תהא <math>f</math> אי-שלילית, מונוטונית יורדת ואינטגרבילית מקומית ב-<math>[k,\infty)</math> עבור <math>k\in\mathbb N</math> כלשהו. אזי <math>\int\limits_k^\infty f</math> מתכנס אם"ם <math>\sum_{n=k}^\infty f(n)</math> מתכנס.
:* {{הערה|הכללה:}} בפרט מתקיים <math>\sum_{n=k+1}^N f(n)\le\int\limits_k^N f\le\sum_{n=k}^{N-1} f(n)</math>.
:* {{הערה|הכללה:}} בפרט מתקיים <math>\sum_{n=k+1}^N f(n)\le\int\limits_k^N f\le\sum_{n=k}^{N-1} f(n)</math>.
* תהא <math>f</math> מוגדרת ב-<math>[a,\infty)</math>. <math>\lim_{x\to\infty} f(x)</math> קיים אם"ם הוא מקיים את תנאי קושי בקטע.
* תהא <math>f</math> מוגדרת ב-<math>[a,\infty)</math>. <math>\lim_{x\to\infty} f(x)</math> קיים אם"ם הוא מקיים את תנאי קושי בקטע.
* תהא <math>f\in\mbox{Int}([a,\infty))</math>. אזי <math>f\in\mbox{INT}([a,\infty))</math> אם"ם <math>\forall\varepsilon>0:\ \exists x_0>a:\ \forall x_2>x_1>x_0:\ \left|\int\limits_{x_1}^{x_2} f\right|<\varepsilon</math>.
* תהא <math>f</math> אינטגרבילית מקומית ב-<math>[a,\infty)</math>. אזי <math>\int\limits_a^\infty f</math> מתכנס אם"ם <math>\forall\varepsilon>0:\ \exists x_0>a:\ \forall x_2>x_1>x_0:\ \left|\int\limits_{x_1}^{x_2} f\right|<\varepsilon</math>.
* תהא <math>f\in\mbox{Int}([a,\infty))</math>. אם <math>|f|\in\mbox{INT}([a,\infty))</math> אז <math>f\in\mbox{INT}([a,\infty))</math>.
* תהא <math>f</math> אינטגרבילית מקומית ב-<math>[a,\infty)</math>. אם <math>|f|</math> אינטגרבילית בקטע אזי גם <math>f</math> אינטגרבילית בו.
* '''מבחן דיריכלה:''' תהא <math>f\in C([a,\infty))</math> ונניח שהאינטגרלים החלקיים <math>\int\limits_a^b f</math> חסומים כאשר <math>b\to\infty</math>. כמו כן תהא <math>g\in\mbox{Mo}([a,\infty))\cap C^1([a,\infty))</math> ו-<math>\lim_{x\to\infty}g(x)=0</math>. אזי <math>f\cdot g\in\mbox{INT}([a,\infty))</math>.
* '''מבחן דיריכלה:''' תהא <math>f</math> רציפה ב-<math>[a,\infty)</math> ונניח שהאינטגרלים החלקיים <math>\int\limits_a^b f</math> חסומים כאשר <math>b\to\infty</math>. כמו כן תהא <math>g</math> מונוטונית ובעלת נגזרת רציפה ב-<math>[a,\infty)</math> ו-<math>\lim_{x\to\infty}g(x)=0</math>. אזי <math>\int\limits_a^\infty f\cdot g</math> מתכנס.
* '''סכימה בחלקים:''' <math>\sum_{n=1}^N a_nb_n=\sum_{n=1}^{N-1}S_n(b_n-b_{n+1})+S_Nb_N</math> כאשר <math>S_n=\sum_{k=1}^n a_k</math>.
* '''סכימה בחלקים:''' <math>\sum_{n=1}^N a_nb_n=\sum_{n=1}^{N-1}S_n(b_n-b_{n+1})+S_Nb_N</math> כאשר <math>S_n=\sum_{k=1}^n a_k</math>.
* '''משפט דיריכלה לטורים:''' נניח שלטור <math>\sum_{n=1}^N a_n</math> יש סכומים חלקיים חסומים ונניח ש-<math>\{b_n\}</math> סדרה מונוטונית כך ש-<math>b_n\to0</math>. אזי <math>\sum_{n=1}^\infty a_nb_n</math> מתכנס.
* '''משפט דיריכלה לטורים:''' נניח שלטור <math>\sum_{n=1}^N a_n</math> יש סכומים חלקיים חסומים ונניח ש-<math>\{b_n\}</math> סדרה מונוטונית כך ש-<math>b_n\to0</math>. אזי <math>\sum_{n=1}^\infty a_nb_n</math> מתכנס.
* אם <math>f,g\in\mbox{INT}((a,b])</math> אז לכל <math>c</math> מתקיים <math>\int\limits_a^b f+cg=\int\limits_a^b f+c\int\limits_a^b g</math>.
* אם <math>f,g</math> אינטגרביליות ב-<math>(a,b]</math> אזי לכל <math>c</math> מתקיים <math>\int\limits_a^b f+cg=\int\limits_a^b f+c\int\limits_a^b g</math>.
* עבור <math>a<c<b</math> ו-<math>f\in\mbox{Int}((a,b])</math>, <math>f\in\mbox{INT}((a,b])</math> אם"ם <math>f\in\mbox{INT}((a,c])</math>, ואם כן <math>\int\limits_a^b f=\int\limits_a^c+\int\limits_b^c f</math>.
* עבור <math>a<c<b</math> ו-<math>f</math> אינטגרבילית מקומית ב-<math>(a,b]</math>, <math>f</math> אינטגרבילית בקטע אם"ם <math>f</math> אינטגרבילית ב-<math>(a,c]</math>, ואם כן <math>\int\limits_a^b f=\int\limits_a^c+\int\limits_b^c f</math>.
* תהי <math>f\in\mbox{Mo}((a,b])</math>. אזי <math>\lim_{x\to a^+}f(x)</math> קיים אם"ם <math>f\in\mbox{Bo}((a,b])</math>.
* תהי <math>f</math> מונוטונית ב-<math>(a,b]</math>. אזי <math>\lim_{x\to a^+}f(x)</math> קיים אם"ם <math>f</math> חסומה ב-<math>(a,b]</math>.
* אם <math>f\in\mbox{Po}((a,b])\cap\mbox{Int}((a,b])</math> אז <math>f\in\mbox{Int}((a,b])</math> אם"ם האינטגרלים החלקיים <math>\int\limits_c^b f</math> חסומים כאשר <math>c\to a^+</math>.
* אם <math>f</math> אי-שלילית ואינטגרבילית מקומית ב-<math>(a,b]</math> אז <math>f</math> אינטגרבילית ב-<math>(a,b]</math> אם"ם האינטגרלים החלקיים <math>\int\limits_c^b f</math> חסומים כאשר <math>c\to a^+</math>.
* '''מבחן ההשוואה:''' <math>f,g\in\mbox{Po}((a,b])\cap\mbox{Int}((a,b])</math> וכן <math>\forall \in(a,b]:\ f(x)\le g(x)</math>. אם <math>g\in\mbox{INT}((a,b])</math> אז <math>f\in\mbox{INT}((a,b])</math>.
* '''מבחן ההשוואה:''' <math>f,g</math> אי-שליליות ואינטגרביליות מקומיות ב-<math>(a,b]</math> וכן <math>\forall \in(a,b]:\ f(x)\le g(x)</math>. אם <math>\int\limits_a^b g</math> מתכנס אזי <math>\int\limits_a^b f</math> מתכנס.
* '''מבחן ההשוואה הגבולי:''' <math>f,g\in\mbox{Po}((a,b])\cap\mbox{Int}((a,b])</math> וקיים <math>\lim_{x\to a^+}\frac{f(x)}{g(x)}</math>. אם <math>g\in\mbox{INT}((a,b])</math> אז <math>f\in\mbox{INT}((a,b])</math>.
* '''מבחן ההשוואה הגבולי:''' <math>f,g</math> אי-שליליות ואינטגרביליות מקומית ב-<math>(a,b]</math> וקיים <math>\lim_{x\to a^+}\frac{f(x)}{g(x)}</math>. אם <math>\int\limits_a^b g</math> מתכנס אז <math>\int\limits_a^b f</math> מתכנס.
:* {{הערה|מקרה פרטי:}} אם בפרט הגבול שונה מ-0 אז שני האינטגרלים מתכנסים ומתבדרים כאחד.
:* {{הערה|מקרה פרטי:}} אם בפרט הגבול שונה מ-0 אז שני האינטגרלים מתכנסים ומתבדרים כאחד.
* תהא <math>f\in\mbox{Int}((a,b])</math>. אזי <math>f\in\mbox{INT}((a,b])</math> אם"ם <math>\forall\varepsilon>0:\ \exists x_0\in(a,b):\ \forall a<x_1<x_2<x_0:\ \left|\int\limits_{x_1}^{x_2}f\right|<\varepsilon</math>.
* תהא <math>f</math> אינטגרבילית מקומית ב-<math>(a,b]</math>. אזי <math>\int\limits_a^b f</math> מתכנס אם"ם <math>\forall\varepsilon>0:\ \exists x_0\in(a,b):\ \forall a<x_1<x_2<x_0:\ \left|\int\limits_{x_1}^{x_2}f\right|<\varepsilon</math>.
* תהא <math>f\in\mbox{Int}((a,b])</math>. אם <math>|f|\in\mbox{INT}((a,b])</math> אז <math>f\in\mbox{INT}((a,b])</math>.
* תהא <math>f</math> אינטגרבילית מקומית ב-<math>(a,b]</math>. אם <math>\int\limits_a^b |f|</math> מתכנס אז <math>\int\limits_a^b f</math> מתכנס.

גרסה מ־17:09, 25 ביולי 2011

במשפטים הבאים, אלא אם צויין אחרת, נסמן:

  • [math]\displaystyle{ c }[/math] הוא קבוע.
  • [math]\displaystyle{ f,g }[/math] פונקציות.
  • הקטע הנתון הוא הקטע הסגור [math]\displaystyle{ [a,b] }[/math].
  • אם מצויין שלפונקציה יש תכונה מסויימת אזי הכוונה לכך שהתכונה מתקיימת בקטע הנתון (למשל: "[math]\displaystyle{ f }[/math] חסומה" = "[math]\displaystyle{ f }[/math] חסומה ב-[math]\displaystyle{ [a,b] }[/math]").
  • [math]\displaystyle{ P }[/math] היא חלוקה [math]\displaystyle{ \{x_0,x_1,\dots,x_n\} }[/math] של הקטע הנתון כך ש-[math]\displaystyle{ a=x_0\lt x_1\lt \dots\lt x_n=b }[/math].
  • [math]\displaystyle{ Q }[/math] היא העדנה של [math]\displaystyle{ P }[/math].
  • [math]\displaystyle{ P'=\{a,c_1,c_2,\dots,c_n,b\} }[/math] היא חלוקה נוספת של הקטע הנוצרת מהחלוקה [math]\displaystyle{ P }[/math] כך ש-[math]\displaystyle{ \forall1\le k\le n:\ c_k\in[x_{k-1},x_k] }[/math] ו-[math]\displaystyle{ \forall 2\le k\le n:\ c_{k-1}\ne c_k }[/math].

אינטגרלים

  • אם [math]\displaystyle{ F }[/math] ו-[math]\displaystyle{ G }[/math] קדומות ל-[math]\displaystyle{ f }[/math] בנקודה כלשהי אז קיים [math]\displaystyle{ c }[/math] כך ש-[math]\displaystyle{ F(x)=G(x)+c }[/math].
  • אם [math]\displaystyle{ f }[/math] חסומה ב-[math]\displaystyle{ [a,b] }[/math] אזי [math]\displaystyle{ m(b-a)\le\underline S(f,P)\le\overline S(f,P)\le M(b-a) }[/math].
  • אם [math]\displaystyle{ |Q|=|P|+r }[/math] (כלומר, [math]\displaystyle{ Q }[/math] מתקבלת מ-[math]\displaystyle{ P }[/math] ע"י הוספת [math]\displaystyle{ r }[/math] נקודות) ו-[math]\displaystyle{ f }[/math] חסומה בקטע אזי [math]\displaystyle{ 0\le\overline S(f,P)-\overline S(f,Q)\le r\lambda(P)\Omega }[/math] וכן [math]\displaystyle{ 0\le\underline S(f,Q)-\underline S(f,P)\le r\lambda(P)\Omega }[/math].
  • לכל חלוקה [math]\displaystyle{ Q }[/math] של הקטע הנתון (לאו דווקא העדנה של [math]\displaystyle{ P }[/math]), אם [math]\displaystyle{ f }[/math] חסומה בקטע אזי [math]\displaystyle{ \underline S(f,P)\le\overline S(f,Q) }[/math].
  • לכל [math]\displaystyle{ f }[/math] אינטגרבילית מתקיים [math]\displaystyle{ \underline\int_a^b f\le\overline{\int}_a^b f }[/math].
  • תהי [math]\displaystyle{ f }[/math] חסומה. אזי [math]\displaystyle{ \underline\int_a^b f=\lim_{\lambda(P)\to0}\underline S(f,P) }[/math] וגם [math]\displaystyle{ \overline{\int}_a^b f=\lim_{\lambda(P)\to0}\overline S(f,P) }[/math].
  • נניח ש-[math]\displaystyle{ f }[/math] חסומה. [math]\displaystyle{ f }[/math] אינטגרבילית אם"ם [math]\displaystyle{ \lim_{\lambda(P)\to0}\overline S(f,P)-\underline S(f,P)=0 }[/math].
  • נניח ש-[math]\displaystyle{ f }[/math] חסומה. [math]\displaystyle{ f }[/math] אינטגרבילית אם"ם לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיימת חלוקה [math]\displaystyle{ P }[/math] של [math]\displaystyle{ [a,b] }[/math] כך ש-[math]\displaystyle{ \overline S(f,P)-\underline S(f,P)\lt \varepsilon }[/math].
  • אם [math]\displaystyle{ f }[/math] רציפה אז [math]\displaystyle{ f }[/math] אינטגרבילית.
  • הכללה: אם [math]\displaystyle{ f }[/math] רציפה וחסומה בקטע הפתוח [math]\displaystyle{ (a,b) }[/math] אזי [math]\displaystyle{ f }[/math] אינטגרבילית.
  • הכללה להכללה: אם [math]\displaystyle{ f }[/math] רציפה בקטע בכל נקודה למעט במספר סופי של נקודות והיא חסומה אזי [math]\displaystyle{ f }[/math] אינטגרבילית.
  • אם [math]\displaystyle{ f }[/math] מונוטונית אזי היא אינטגרבילית.
  • נניח ש-[math]\displaystyle{ a\lt c\lt b }[/math]. אזי [math]\displaystyle{ f }[/math] אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math], ב-[math]\displaystyle{ [a,c] }[/math] וב-[math]\displaystyle{ [c,b] }[/math] אם"ם היא אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math], ואם כן אז [math]\displaystyle{ \int\limits_a^b f=\int\limits_a^c f+\int\limits_c^b f }[/math].
  • הכללה: עבור [math]\displaystyle{ f }[/math] כנ"ל ו-[math]\displaystyle{ a=x_0,x_1,\dots,x_n=b }[/math] (הנקודות לאו דווקא מסודרות בסדר עולה) מתקיים [math]\displaystyle{ \int\limits_a^b f=\sum_{k=1}^n\int\limits_{x_{k-1}}^{x_k} f }[/math].
  • אם [math]\displaystyle{ f }[/math] חסומה אז [math]\displaystyle{ \underline S(f,P)\le S(f,P,P')\le\overline S(f,P) }[/math]. יתר על כן, [math]\displaystyle{ \underline S(f,P)=\inf_{P'}S(f,P,P') }[/math] ו-[math]\displaystyle{ \overline S(f,P)=\sup_{P'}S(f,P,P') }[/math].
  • הגדרות האינטגרל לפי דרבו ולפי רימן שקולות.
  • לינאריות: עבור [math]\displaystyle{ f,g }[/math] אינטגרביליות מתקיים [math]\displaystyle{ \int\limits_a^b f+cg=\int\limits_a^b f+c\int\limits_a^b g }[/math].
  • מונוטוניות: אם [math]\displaystyle{ f,g }[/math] אינטגרביליות וכן [math]\displaystyle{ \forall x\in[a,b]:\ f(x)\ge g(x) }[/math] אזי [math]\displaystyle{ \int\limits_a^b f\ge\int\limits_a^b g }[/math].
  • חיוביות: בפרט מתקיים שאם [math]\displaystyle{ f }[/math] אינטגרביליות ואי-שלילית אזי [math]\displaystyle{ \int\limits_a^b f\ge0 }[/math].
  • הכללה לאי-שיוויון המשולש: אם [math]\displaystyle{ |f| }[/math] אינטגרבילית אז [math]\displaystyle{ f }[/math] אינטגרבילית ו-[math]\displaystyle{ \left|\int\limits_a^b f\right|\le\int\limits_a^b |f| }[/math].
  • אם [math]\displaystyle{ f }[/math] אינטגרבילית וחסומה אז [math]\displaystyle{ m(b-a)\le\int\limits_a^b f\le M(b-a) }[/math].
  • מקרה פרטי: אם [math]\displaystyle{ \forall x\in[a,b]:\ |f(x)|\le M }[/math] ו-[math]\displaystyle{ f }[/math] אינטגרבילית אז [math]\displaystyle{ \left|\int\limits_a^b f\right|\le M(b-a) }[/math].
  • מקרה פרטי: אם [math]\displaystyle{ f(x)=M }[/math] (פונקציה קבועה) אז [math]\displaystyle{ \int\limits_a^b f=M(b-a) }[/math].
  • המשפט היסודי של חשבון אינטגרלי: תהי [math]\displaystyle{ f }[/math] אינטגרבילית ותהי [math]\displaystyle{ F }[/math] כך ש-[math]\displaystyle{ \forall x\in[a,b]:\ F(x):=\int\limits_a^x f }[/math]. אזי [math]\displaystyle{ F }[/math] רציפה וכן לכל נקודה ב-[math]\displaystyle{ [a,b] }[/math] שבה [math]\displaystyle{ f }[/math] רציפה, [math]\displaystyle{ F }[/math] קדומה ל-[math]\displaystyle{ f }[/math] (כלומר, [math]\displaystyle{ F }[/math] גזירה ב-[math]\displaystyle{ [a,b] }[/math] ו-[math]\displaystyle{ F'=f }[/math]).
  • נוסחת ניוטון-לייבניץ: תהי [math]\displaystyle{ f }[/math] רציפה. אזי [math]\displaystyle{ \int\limits_a^b f=[F(x)]_{x=a}^b=F(b)-F(a) }[/math].
  • לכל [math]\displaystyle{ f }[/math] רציפה יש פונקציה קדומה.
  • אינטגרציה בחלקים: נניח כי [math]\displaystyle{ f',g' }[/math] רציפות. אזי [math]\displaystyle{ \int f(x)g(x)\mathrm dx=f(x)g(x)-\int f'(x)g(x)\mathrm dx }[/math].
  • [math]\displaystyle{ \int\limits_a^b f\cdot g'=[f(x)g(x)]_{x=a}^b-\int\limits_a^b f'\cdot g }[/math]
  • שיטת ההצבה: [math]\displaystyle{ \int f(g(x))g'(x)\mathrm dx=F(g(x)){\color{Gray}+c} }[/math].
  • [math]\displaystyle{ \int\limits_a^b f(g(x))g'(x)\mathrm dx=\int\limits_{g(a)}^{g(b)}f(g(x))\mathrm dg(x) }[/math]
  • כל פונקציה רציונלית [math]\displaystyle{ \frac pq }[/math] כך ש-[math]\displaystyle{ \deg(p)\lt \deg(q) }[/math] ניתנת לפירוק יחיד כסכום של שברים חלקיים [math]\displaystyle{ \frac A{(x-x_0)^n}+\frac{Bx+c}{(x^2+bx+c)^k} }[/math] כאשר [math]\displaystyle{ A,B,C,x_0\in\mathbb R }[/math] ול-[math]\displaystyle{ x^2+bx+c }[/math] אין שורשים ממשיים.
  • נפח גוף הסיבוב הנוצר מסיבוב השטח שמתחת ל-[math]\displaystyle{ f }[/math] אי-שלילית בין [math]\displaystyle{ a }[/math] ל-[math]\displaystyle{ b }[/math] סביב ציר ה-[math]\displaystyle{ x }[/math] הוא [math]\displaystyle{ \int\limits_a^b \pi f^2 }[/math].
  • אם [math]\displaystyle{ f }[/math] רציפה אז הממוצע שלה בקטע [math]\displaystyle{ [a,b] }[/math] הוא [math]\displaystyle{ \frac1{b-a}\int\limits_a^b f }[/math].
  • אם [math]\displaystyle{ f }[/math] בעלת גזירה אז אורך הגרף שלה בקטע [math]\displaystyle{ [a,b] }[/math] הוא [math]\displaystyle{ \int\limits_a^b\sqrt{1+f'(x)^2}\mathrm dx }[/math].
  • שטח המעטפת (ללא הבסיסים) של גוף סיבוב הנוצר מסיבוב הגרף של [math]\displaystyle{ f }[/math] רציפה סביב ציר ה-[math]\displaystyle{ x }[/math] בקטע [math]\displaystyle{ [a,b] }[/math] הוא [math]\displaystyle{ \int\limits_a^b 2\pi f(x)\sqrt{1+f'(x)^2}\mathrm dx }[/math].
  • תהא [math]\displaystyle{ f }[/math] בעלת נגזרת [math]\displaystyle{ n }[/math]-ית רציפה. אזי [math]\displaystyle{ \int\limits_a^b f\approx\int\limits_a^b P_n }[/math] כאשר [math]\displaystyle{ P_n }[/math] הוא פיתוח טיילור מסדר [math]\displaystyle{ n }[/math] של [math]\displaystyle{ f }[/math] והשארית חסומה ע"י [math]\displaystyle{ \int\limits_a^b R_n=f^{(n+1)}(c)\frac{b^{n+2}-a^{n+2}}{(n+2)!} }[/math].
  • תהא [math]\displaystyle{ f }[/math] בעלת נגזרת רציפה והחלוקה [math]\displaystyle{ P }[/math] היא חלוקה שווה כאשר לכל [math]\displaystyle{ k }[/math] מתקיים [math]\displaystyle{ \Delta x_k=h }[/math]. אזי [math]\displaystyle{ \int\limits_a^b f\approx h\sum_{k=1}^n f(x_k) }[/math] והשארית חסומה ע"י [math]\displaystyle{ \frac{b-a}2Mh }[/math] כאשר [math]\displaystyle{ M=\max_{x\in[a,b]}\left|f'(x)\right| }[/math].
  • תהא [math]\displaystyle{ f }[/math] בעלת נגזרת שנייה רציפה והחלוקה [math]\displaystyle{ P }[/math] היא חלוקה שווה כאשר לכל [math]\displaystyle{ k }[/math] מתקיים [math]\displaystyle{ \Delta x_k=h }[/math]. אזי [math]\displaystyle{ \int\limits_a^b f\approx h\frac{f(x_0)+f(x_n)}2+h\sum_{k=1}^{n-1}f(x_k) }[/math] והשארית חסומה ע"י [math]\displaystyle{ \frac5{12}(b-a)Mh^2 }[/math] כאשר [math]\displaystyle{ M=\max_{x\in[a,b]}\left|f''(x)\right| }[/math].
  • תהא [math]\displaystyle{ f }[/math] בעלת נגזרת רביעית רציפה והחלוקה [math]\displaystyle{ P }[/math] היא חלוקה שווה כאשר לכל [math]\displaystyle{ k }[/math] מתקיים [math]\displaystyle{ \Delta x_k=h }[/math] ו-[math]\displaystyle{ n }[/math] זוגי. אזי [math]\displaystyle{ \int\limits_a^b f\approx\frac h3\left(f(x_0)+4\sum_{k=1}^{n/2} f(x_{2k-1})+2\sum_{k=1}^{n/2-1}f(x_{2k})+f(x_n)\right) }[/math] והשגיאה חסומה ע"י [math]\displaystyle{ \frac{b-a}{180}Mh^4 }[/math] כאשר [math]\displaystyle{ M=\max_{x\in[a,b]}\left|f^{(4)}(x)\right| }[/math].
  • תהיינה [math]\displaystyle{ f,g }[/math] אינטגרביליות ב-[math]\displaystyle{ [a,\infty) }[/math]. אזי [math]\displaystyle{ f+cg }[/math] אינטגרבילית ב-[math]\displaystyle{ [a,\infty) }[/math] ומתקיים [math]\displaystyle{ \int\limits_a^\infty f+cg=\int\limits_a^\infty f+c\int\limits_a^\infty g }[/math].
  • תהא [math]\displaystyle{ f }[/math] אינטגרבילית מקומית ב-[math]\displaystyle{ [a,\infty) }[/math] ויהי [math]\displaystyle{ b\gt a }[/math]. אזי [math]\displaystyle{ f }[/math] אינטגרבילית ב-[math]\displaystyle{ [a,\infty) }[/math] אם"ם [math]\displaystyle{ f }[/math] אינטגרבילית ב-[math]\displaystyle{ [b,\infty) }[/math] ואם כן [math]\displaystyle{ \int\limits_a^\infty f=\int\limits_a^b f+\int\limits_b^\infty f }[/math].
  • [math]\displaystyle{ f }[/math] מונוטונית עולה ב-[math]\displaystyle{ [a,\infty) }[/math]. אזי [math]\displaystyle{ \lim_{x\to\infty} f(x) }[/math] קיים אם"ם [math]\displaystyle{ \sup_x f(x)\lt \infty }[/math] ואם כן [math]\displaystyle{ \lim_{x\to\infty} f(x)=\sup_{x\gt a} f(x) }[/math].
  • [math]\displaystyle{ f }[/math] אי-שלילית ואינטגרבילית מקומית ב-[math]\displaystyle{ [a,\infty) }[/math]. אזי [math]\displaystyle{ \int\limits_a^\infty f }[/math] מתכנס אם"ם האינטגרלים החלקיים [math]\displaystyle{ \int\limits_a^R f }[/math] חסומים מלעיל, ואם לא אז [math]\displaystyle{ \int\limits_a^\infty f=\infty }[/math].
  • מבחן ההשוואה: נניח ש-[math]\displaystyle{ f,g }[/math] אי-שליליות ואינטגרביליות מקומית ב-[math]\displaystyle{ [a,\infty) }[/math] וכן [math]\displaystyle{ \forall x\in[a,\infty):\ f(x)\le g(x) }[/math]. אם [math]\displaystyle{ \int\limits_a^\infty g }[/math] מתכנס אז [math]\displaystyle{ \int\limits_a^\infty f }[/math] מתכנס.
  • מבחן ההשוואה הגבולי: [math]\displaystyle{ f,g }[/math] אי-שליליות ואינטגרביליות מקומית ב-[math]\displaystyle{ [a,\infty) }[/math] וכן [math]\displaystyle{ \lim_{x\to\infty}\frac{f(x)}{g(x)}\in\mathbb R }[/math]. אם [math]\displaystyle{ \int\limits_a^\infty g }[/math] מתכנס אז [math]\displaystyle{ \int\limits_a^\infty f }[/math] מתכנס.
  • מקרה פרטי: אם בפרט הגבול שונה מ-0 אז שני האינטגרלים מתכנסים ומתבדרים כאחד.
  • המבחן האינטגרלי לטורים: תהא [math]\displaystyle{ f }[/math] אי-שלילית, מונוטונית יורדת ואינטגרבילית מקומית ב-[math]\displaystyle{ [k,\infty) }[/math] עבור [math]\displaystyle{ k\in\mathbb N }[/math] כלשהו. אזי [math]\displaystyle{ \int\limits_k^\infty f }[/math] מתכנס אם"ם [math]\displaystyle{ \sum_{n=k}^\infty f(n) }[/math] מתכנס.
  • הכללה: בפרט מתקיים [math]\displaystyle{ \sum_{n=k+1}^N f(n)\le\int\limits_k^N f\le\sum_{n=k}^{N-1} f(n) }[/math].
  • תהא [math]\displaystyle{ f }[/math] מוגדרת ב-[math]\displaystyle{ [a,\infty) }[/math]. [math]\displaystyle{ \lim_{x\to\infty} f(x) }[/math] קיים אם"ם הוא מקיים את תנאי קושי בקטע.
  • תהא [math]\displaystyle{ f }[/math] אינטגרבילית מקומית ב-[math]\displaystyle{ [a,\infty) }[/math]. אזי [math]\displaystyle{ \int\limits_a^\infty f }[/math] מתכנס אם"ם [math]\displaystyle{ \forall\varepsilon\gt 0:\ \exists x_0\gt a:\ \forall x_2\gt x_1\gt x_0:\ \left|\int\limits_{x_1}^{x_2} f\right|\lt \varepsilon }[/math].
  • תהא [math]\displaystyle{ f }[/math] אינטגרבילית מקומית ב-[math]\displaystyle{ [a,\infty) }[/math]. אם [math]\displaystyle{ |f| }[/math] אינטגרבילית בקטע אזי גם [math]\displaystyle{ f }[/math] אינטגרבילית בו.
  • מבחן דיריכלה: תהא [math]\displaystyle{ f }[/math] רציפה ב-[math]\displaystyle{ [a,\infty) }[/math] ונניח שהאינטגרלים החלקיים [math]\displaystyle{ \int\limits_a^b f }[/math] חסומים כאשר [math]\displaystyle{ b\to\infty }[/math]. כמו כן תהא [math]\displaystyle{ g }[/math] מונוטונית ובעלת נגזרת רציפה ב-[math]\displaystyle{ [a,\infty) }[/math] ו-[math]\displaystyle{ \lim_{x\to\infty}g(x)=0 }[/math]. אזי [math]\displaystyle{ \int\limits_a^\infty f\cdot g }[/math] מתכנס.
  • סכימה בחלקים: [math]\displaystyle{ \sum_{n=1}^N a_nb_n=\sum_{n=1}^{N-1}S_n(b_n-b_{n+1})+S_Nb_N }[/math] כאשר [math]\displaystyle{ S_n=\sum_{k=1}^n a_k }[/math].
  • משפט דיריכלה לטורים: נניח שלטור [math]\displaystyle{ \sum_{n=1}^N a_n }[/math] יש סכומים חלקיים חסומים ונניח ש-[math]\displaystyle{ \{b_n\} }[/math] סדרה מונוטונית כך ש-[math]\displaystyle{ b_n\to0 }[/math]. אזי [math]\displaystyle{ \sum_{n=1}^\infty a_nb_n }[/math] מתכנס.
  • אם [math]\displaystyle{ f,g }[/math] אינטגרביליות ב-[math]\displaystyle{ (a,b] }[/math] אזי לכל [math]\displaystyle{ c }[/math] מתקיים [math]\displaystyle{ \int\limits_a^b f+cg=\int\limits_a^b f+c\int\limits_a^b g }[/math].
  • עבור [math]\displaystyle{ a\lt c\lt b }[/math] ו-[math]\displaystyle{ f }[/math] אינטגרבילית מקומית ב-[math]\displaystyle{ (a,b] }[/math], [math]\displaystyle{ f }[/math] אינטגרבילית בקטע אם"ם [math]\displaystyle{ f }[/math] אינטגרבילית ב-[math]\displaystyle{ (a,c] }[/math], ואם כן [math]\displaystyle{ \int\limits_a^b f=\int\limits_a^c+\int\limits_b^c f }[/math].
  • תהי [math]\displaystyle{ f }[/math] מונוטונית ב-[math]\displaystyle{ (a,b] }[/math]. אזי [math]\displaystyle{ \lim_{x\to a^+}f(x) }[/math] קיים אם"ם [math]\displaystyle{ f }[/math] חסומה ב-[math]\displaystyle{ (a,b] }[/math].
  • אם [math]\displaystyle{ f }[/math] אי-שלילית ואינטגרבילית מקומית ב-[math]\displaystyle{ (a,b] }[/math] אז [math]\displaystyle{ f }[/math] אינטגרבילית ב-[math]\displaystyle{ (a,b] }[/math] אם"ם האינטגרלים החלקיים [math]\displaystyle{ \int\limits_c^b f }[/math] חסומים כאשר [math]\displaystyle{ c\to a^+ }[/math].
  • מבחן ההשוואה: [math]\displaystyle{ f,g }[/math] אי-שליליות ואינטגרביליות מקומיות ב-[math]\displaystyle{ (a,b] }[/math] וכן [math]\displaystyle{ \forall \in(a,b]:\ f(x)\le g(x) }[/math]. אם [math]\displaystyle{ \int\limits_a^b g }[/math] מתכנס אזי [math]\displaystyle{ \int\limits_a^b f }[/math] מתכנס.
  • מבחן ההשוואה הגבולי: [math]\displaystyle{ f,g }[/math] אי-שליליות ואינטגרביליות מקומית ב-[math]\displaystyle{ (a,b] }[/math] וקיים [math]\displaystyle{ \lim_{x\to a^+}\frac{f(x)}{g(x)} }[/math]. אם [math]\displaystyle{ \int\limits_a^b g }[/math] מתכנס אז [math]\displaystyle{ \int\limits_a^b f }[/math] מתכנס.
  • מקרה פרטי: אם בפרט הגבול שונה מ-0 אז שני האינטגרלים מתכנסים ומתבדרים כאחד.
  • תהא [math]\displaystyle{ f }[/math] אינטגרבילית מקומית ב-[math]\displaystyle{ (a,b] }[/math]. אזי [math]\displaystyle{ \int\limits_a^b f }[/math] מתכנס אם"ם [math]\displaystyle{ \forall\varepsilon\gt 0:\ \exists x_0\in(a,b):\ \forall a\lt x_1\lt x_2\lt x_0:\ \left|\int\limits_{x_1}^{x_2}f\right|\lt \varepsilon }[/math].
  • תהא [math]\displaystyle{ f }[/math] אינטגרבילית מקומית ב-[math]\displaystyle{ (a,b] }[/math]. אם [math]\displaystyle{ \int\limits_a^b |f| }[/math] מתכנס אז [math]\displaystyle{ \int\limits_a^b f }[/math] מתכנס.