88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 4: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "==פונקציות== '''הגדרה:''' יהיו A,B קבוצות וR יחס בינהן. אזי: *התחום של R הינו <math>dom(R)=\{a\in A|\exists b\in B:(a,...")
 
שורה 7: שורה 7:
*אם R יחס מלא על A אזי האיחוד של התמונה והתחום שווה A
*אם R יחס מלא על A אזי האיחוד של התמונה והתחום שווה A
*<math>R=\{(1,a),(2,b),(3,a)\}</math> אזי התחום הוא <math>dom(R)=\{1,2,3\}</math> והתמונה הינה <math>im(R)=\{a,b\}</math>
*<math>R=\{(1,a),(2,b),(3,a)\}</math> אזי התחום הוא <math>dom(R)=\{1,2,3\}</math> והתמונה הינה <math>im(R)=\{a,b\}</math>
'''הגדרה:'''
*יחס R נקרא '''חד ערכי''' אם <math>[(x,b)\in R] \and [(x,d) \in R] \rightarrow (d=b)</math>
*יחס R נקרא '''חד-חד ערכי''' אם <math>[(x,b)\in R] \and [(y,b) \in R] \rightarrow (x=y)</math> (כלומר, היחס ההופכי הינו חד ערכי)
*יחס R נקרא '''על''' אם <math>\forall b\in B:\exists a\in A:(a,b)\in R</math> כלומר <math>im(R)=B</math>

גרסה מ־06:57, 2 באוגוסט 2011

פונקציות

הגדרה: יהיו A,B קבוצות וR יחס בינהן. אזי:

  • התחום של R הינו [math]\displaystyle{ dom(R)=\{a\in A|\exists b\in B:(a,b)\in R\} }[/math]
  • התמונה של R הינה [math]\displaystyle{ im(R)=\{b\in B|\exists a\in A:(a,b)\in R\} }[/math]

דוגמא.

  • אם R יחס מלא על A אזי האיחוד של התמונה והתחום שווה A
  • [math]\displaystyle{ R=\{(1,a),(2,b),(3,a)\} }[/math] אזי התחום הוא [math]\displaystyle{ dom(R)=\{1,2,3\} }[/math] והתמונה הינה [math]\displaystyle{ im(R)=\{a,b\} }[/math]

הגדרה:

  • יחס R נקרא חד ערכי אם [math]\displaystyle{ [(x,b)\in R] \and [(x,d) \in R] \rightarrow (d=b) }[/math]
  • יחס R נקרא חד-חד ערכי אם [math]\displaystyle{ [(x,b)\in R] \and [(y,b) \in R] \rightarrow (x=y) }[/math] (כלומר, היחס ההופכי הינו חד ערכי)
  • יחס R נקרא על אם [math]\displaystyle{ \forall b\in B:\exists a\in A:(a,b)\in R }[/math] כלומר [math]\displaystyle{ im(R)=B }[/math]