שדות - תכונות בסיסיות: הבדלים בין גרסאות בדף
אין תקציר עריכה |
|||
שורה 1: | שורה 1: | ||
== | == הרחבות של שדות == | ||
'''הגדרה:''' יהיה <math>F</math> שדה. הרחבה של <math>F</math> היא כינוי לכל שדה <math>K</math> המכיל את <math>F</math>. לרוב כותבים גם <math> | '''הגדרה:''' יהיה <math>F</math> שדה. הרחבה של <math>F</math> היא כינוי לכל שדה <math>K</math> המכיל את <math>F</math>. לרוב כותבים גם <math>K/F</math>. באופן טבעי <math>K</math> הוא מרחב וקטורי מעל <math>F</math>. המימד של <math>K</math> מעל <math>F</math> יסומן ב-<math>[K:F]</math> (הוא אינו חייב להיות סופי). | ||
'''דוגמא:''' <math>\mathbb{C}/\mathbb{R}</math> היא הרחבת שדות ממימד סופי. <math>\mathbb{R}/\mathbb{Q}</math> היא הרחבת שדות ממימד אינסופי. | |||
'''טענה | '''טענה:''' יהיו <math>F\subseteq K\subseteq L</math> שדות. אזי <math>[L:F]=[L:K]\cdot[K:F]</math>. | ||
'''הרעיון של ההוכחה:''' אם <math>A</math> הוא בסיס ל-<math>L</math> כמרחב וקטורי מעל <math>K</math> ו-<math>B</math> הוא בסיס ל-<math>K</math> כמרחב וקטורי מעל <math>F</math> אז הקבוצה <math>\{ab~|~a\in A, b\in B\}</math> היא בסיס ל-<math>L</math> כמרחב וקטורי מעל <math>F</math> והיא בעלת <math>[L:K][K:F]</math> איברים (זה לא טריוויאלי). | '''הרעיון של ההוכחה:''' אם <math>A</math> הוא בסיס ל-<math>L</math> כמרחב וקטורי מעל <math>K</math> ו-<math>B</math> הוא בסיס ל-<math>K</math> כמרחב וקטורי מעל <math>F</math> אז הקבוצה <math>\{ab~|~a\in A, b\in B\}</math> היא בסיס ל-<math>L</math> כמרחב וקטורי מעל <math>F</math> והיא בעלת <math>[L:K][K:F]</math> איברים (זה לא טריוויאלי). | ||
'''תכונה:''' אם <math>F</math> שדה אז כל חיתוך של תתי שדות של <math>F</math> הוא גם שדה. | |||
'''הגדרה:''' נניח ש-<math>L</math> שדה ו-<math>F,K</math> תת שדות של <math>L</math>. הקומפוזיטום של <math>F,K</math> הוא תת השדה הקטן ביותר המכיל את <math>F,K</math>. הוא יסומן ב-<math>LK</math>. | |||
== איברים אלגבריים וטרנסצנדנטים == | |||
'''הגדרה:''' תהי <math>K/F</math> הרחבת שדות ו-<math>a\in K</math>. האיבר <math>a</math> נקרא אלגברי מעל <math>F</math> אם קיים פולינום <math>f(x)</math> כך ש-<math>f(a)=0</math>. אם לא קיים פולינום כזה, <math>a</math> נקרא טרנסצנדנטי מעל <math>F</math>. | '''הגדרה:''' תהי <math>K/F</math> הרחבת שדות ו-<math>a\in K</math>. האיבר <math>a</math> נקרא אלגברי מעל <math>F</math> אם קיים פולינום <math>f(x)</math> כך ש-<math>f(a)=0</math>. אם לא קיים פולינום כזה, <math>a</math> נקרא טרנסצנדנטי מעל <math>F</math>. | ||
'''דוגמא:''' <math>\sqrt{2}</math> הוא אלגברי מעל <math>\mathbb{Q}</math> כי הוא מאפס את <math>x^2-2\in\mathbb{Q}</math>. לעומת זאת, ניתן להוכיח כי המספרים <math>e,\pi</math> הם טרנסצנדנטיים מעל <math>\mathbb{Q}</math>. | |||
'''הערה:''' לא קשה להראות כי כמות המספרים המרוכבים האלגבריים מעל <math>\mathbb{Q}</math> היא בת מנייה. לכן, בהכרח קיימים ב-<math>\mathbb{C}</math> (וגם ב-<math>\mathbb{R}</math>) איברים טרנסצנדנטיים. (זו הוכחה לא קונסטרוקטיבית לכך שקיימים מספרים טרנצנדנטיים). | |||
'''דוגמא:''' יהיה <math>F</math> שדה ויהי <math>F(t)</math> שדה השברים של <math>F[t]</math>. קל לבדוק כי <math>t</math> טרנסצנדנטי מעל <math>F</math>. למעשה, כל איבר ב-<math>F(t)\setminus F</math> הוא טרנסצנדנטי. |
גרסה מ־15:01, 24 בנובמבר 2011
הרחבות של שדות
הגדרה: יהיה [math]\displaystyle{ F }[/math] שדה. הרחבה של [math]\displaystyle{ F }[/math] היא כינוי לכל שדה [math]\displaystyle{ K }[/math] המכיל את [math]\displaystyle{ F }[/math]. לרוב כותבים גם [math]\displaystyle{ K/F }[/math]. באופן טבעי [math]\displaystyle{ K }[/math] הוא מרחב וקטורי מעל [math]\displaystyle{ F }[/math]. המימד של [math]\displaystyle{ K }[/math] מעל [math]\displaystyle{ F }[/math] יסומן ב-[math]\displaystyle{ [K:F] }[/math] (הוא אינו חייב להיות סופי).
דוגמא: [math]\displaystyle{ \mathbb{C}/\mathbb{R} }[/math] היא הרחבת שדות ממימד סופי. [math]\displaystyle{ \mathbb{R}/\mathbb{Q} }[/math] היא הרחבת שדות ממימד אינסופי.
טענה: יהיו [math]\displaystyle{ F\subseteq K\subseteq L }[/math] שדות. אזי [math]\displaystyle{ [L:F]=[L:K]\cdot[K:F] }[/math].
הרעיון של ההוכחה: אם [math]\displaystyle{ A }[/math] הוא בסיס ל-[math]\displaystyle{ L }[/math] כמרחב וקטורי מעל [math]\displaystyle{ K }[/math] ו-[math]\displaystyle{ B }[/math] הוא בסיס ל-[math]\displaystyle{ K }[/math] כמרחב וקטורי מעל [math]\displaystyle{ F }[/math] אז הקבוצה [math]\displaystyle{ \{ab~|~a\in A, b\in B\} }[/math] היא בסיס ל-[math]\displaystyle{ L }[/math] כמרחב וקטורי מעל [math]\displaystyle{ F }[/math] והיא בעלת [math]\displaystyle{ [L:K][K:F] }[/math] איברים (זה לא טריוויאלי).
תכונה: אם [math]\displaystyle{ F }[/math] שדה אז כל חיתוך של תתי שדות של [math]\displaystyle{ F }[/math] הוא גם שדה.
הגדרה: נניח ש-[math]\displaystyle{ L }[/math] שדה ו-[math]\displaystyle{ F,K }[/math] תת שדות של [math]\displaystyle{ L }[/math]. הקומפוזיטום של [math]\displaystyle{ F,K }[/math] הוא תת השדה הקטן ביותר המכיל את [math]\displaystyle{ F,K }[/math]. הוא יסומן ב-[math]\displaystyle{ LK }[/math].
איברים אלגבריים וטרנסצנדנטים
הגדרה: תהי [math]\displaystyle{ K/F }[/math] הרחבת שדות ו-[math]\displaystyle{ a\in K }[/math]. האיבר [math]\displaystyle{ a }[/math] נקרא אלגברי מעל [math]\displaystyle{ F }[/math] אם קיים פולינום [math]\displaystyle{ f(x) }[/math] כך ש-[math]\displaystyle{ f(a)=0 }[/math]. אם לא קיים פולינום כזה, [math]\displaystyle{ a }[/math] נקרא טרנסצנדנטי מעל [math]\displaystyle{ F }[/math].
דוגמא: [math]\displaystyle{ \sqrt{2} }[/math] הוא אלגברי מעל [math]\displaystyle{ \mathbb{Q} }[/math] כי הוא מאפס את [math]\displaystyle{ x^2-2\in\mathbb{Q} }[/math]. לעומת זאת, ניתן להוכיח כי המספרים [math]\displaystyle{ e,\pi }[/math] הם טרנסצנדנטיים מעל [math]\displaystyle{ \mathbb{Q} }[/math].
הערה: לא קשה להראות כי כמות המספרים המרוכבים האלגבריים מעל [math]\displaystyle{ \mathbb{Q} }[/math] היא בת מנייה. לכן, בהכרח קיימים ב-[math]\displaystyle{ \mathbb{C} }[/math] (וגם ב-[math]\displaystyle{ \mathbb{R} }[/math]) איברים טרנסצנדנטיים. (זו הוכחה לא קונסטרוקטיבית לכך שקיימים מספרים טרנצנדנטיים).
דוגמא: יהיה [math]\displaystyle{ F }[/math] שדה ויהי [math]\displaystyle{ F(t) }[/math] שדה השברים של [math]\displaystyle{ F[t] }[/math]. קל לבדוק כי [math]\displaystyle{ t }[/math] טרנסצנדנטי מעל [math]\displaystyle{ F }[/math]. למעשה, כל איבר ב-[math]\displaystyle{ F(t)\setminus F }[/math] הוא טרנסצנדנטי.