פתרון אינפי 1, תש"נ: הבדלים בין גרסאות בדף
(יצירת דף עם התוכן "==שאלה 1== טענה 7.8 אצל ד"ר שיין: תהי <math>f </math> פונקצ' המוגדרת בסביבת <math>x_0</math>. נניח כי <math>f</math> ...") |
אין תקציר עריכה |
||
שורה 1: | שורה 1: | ||
([http://u.cs.biu.ac.il/~sheinee/tests/math/88132/4ef19f65ab044.pdf המבחן] ) | |||
==שאלה 1== | ==שאלה 1== | ||
טענה 7.8 אצל ד"ר שיין: תהי <math>f </math> פונקצ' המוגדרת בסביבת <math>x_0</math>. נניח כי <math>f</math> גזירה ב-<math>x_0</math> וגם <math>f'(x_0) \neq 0</math> וגם קיימת הפונקצייה ההפוכה <math>f^{-1}</math> ורציפה בנקודה <math>y_0=f(x_0)</math>. אזי <math>f^{-1}</math> גזירה ב-<math>y_0 </math>, ונגזרתה שם שווה ל- <math>\frac{1}{f'(x_0)}</math>. | (טענה 7.8 אצל ד"ר שיין:) תהי <math>f </math> פונקצ' המוגדרת בסביבת <math>x_0</math>. נניח כי <math>f</math> גזירה ב-<math>x_0</math> וגם <math>f'(x_0) \neq 0</math> וגם קיימת הפונקצייה ההפוכה <math>f^{-1}</math> ורציפה בנקודה <math>y_0=f(x_0)</math>. אזי <math>f^{-1}</math> גזירה ב-<math>y_0 </math>, ונגזרתה שם שווה ל- <math>\frac{1}{f'(x_0)}</math>. | ||
הוכחה: לפי ההנחה, f גזירה ב-<math>x_0</math> ולכן עפ"י ההגדרה מתקיים <math>\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)</math>. | הוכחה: לפי ההנחה, f גזירה ב-<math>x_0</math> ולכן עפ"י ההגדרה מתקיים <math>\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)</math>. | ||
שורה 7: | שורה 10: | ||
לפי כללי האריתמטיקה (חשבון) של גבולות, מתקיים: <math>\frac{1}{\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}}=\lim_{x\rightarrow x_0}\frac{x-x_0}{f(x)-f(x_0)}=\frac{1}{f'(x_0)}</math>. | לפי כללי האריתמטיקה (חשבון) של גבולות, מתקיים: <math>\frac{1}{\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}}=\lim_{x\rightarrow x_0}\frac{x-x_0}{f(x)-f(x_0)}=\frac{1}{f'(x_0)}</math>. | ||
לפי ההנחות <math>f^{-1}</math> | לפי ההנחות <math>f^{-1}</math> רציפה ב<math>y_0</math>. לכן <math>\lim_{y\rightarrow y_0}f^{-1}(y)=f^{-1}(y_0)=x_0</math>, ובאותו האופן <math>\lim_{x\rightarrow x_0}\frac{x-x_0}{f(x)-f(x_0)}=\lim_{y\rightarrow y_0}\frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}</math>, ולכן בסך הכל קיבלנו ש- | ||
<math>\lim_{y\rightarrow y_0}\frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}=\frac{1}{f'(x_0)}</math> | |||
זה נותן את הנדרש עפ"י הגדרת הנגזרת. | |||
==שאלה 2== | ==שאלה 2== | ||
נגדיר פונ' <math>h</math> על ידי <math>\forall x \in [0,2]: h(x)=f(x)-\frac{1}{x}</math>. | |||
==שאלה 3== | ==שאלה 3== |
גרסה מ־13:09, 3 בפברואר 2012
(המבחן )
שאלה 1
(טענה 7.8 אצל ד"ר שיין:) תהי [math]\displaystyle{ f }[/math] פונקצ' המוגדרת בסביבת [math]\displaystyle{ x_0 }[/math]. נניח כי [math]\displaystyle{ f }[/math] גזירה ב-[math]\displaystyle{ x_0 }[/math] וגם [math]\displaystyle{ f'(x_0) \neq 0 }[/math] וגם קיימת הפונקצייה ההפוכה [math]\displaystyle{ f^{-1} }[/math] ורציפה בנקודה [math]\displaystyle{ y_0=f(x_0) }[/math]. אזי [math]\displaystyle{ f^{-1} }[/math] גזירה ב-[math]\displaystyle{ y_0 }[/math], ונגזרתה שם שווה ל- [math]\displaystyle{ \frac{1}{f'(x_0)} }[/math].
הוכחה: לפי ההנחה, f גזירה ב-[math]\displaystyle{ x_0 }[/math] ולכן עפ"י ההגדרה מתקיים [math]\displaystyle{ \lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0) }[/math].
לפי כללי האריתמטיקה (חשבון) של גבולות, מתקיים: [math]\displaystyle{ \frac{1}{\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}}=\lim_{x\rightarrow x_0}\frac{x-x_0}{f(x)-f(x_0)}=\frac{1}{f'(x_0)} }[/math].
לפי ההנחות [math]\displaystyle{ f^{-1} }[/math] רציפה ב[math]\displaystyle{ y_0 }[/math]. לכן [math]\displaystyle{ \lim_{y\rightarrow y_0}f^{-1}(y)=f^{-1}(y_0)=x_0 }[/math], ובאותו האופן [math]\displaystyle{ \lim_{x\rightarrow x_0}\frac{x-x_0}{f(x)-f(x_0)}=\lim_{y\rightarrow y_0}\frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0} }[/math], ולכן בסך הכל קיבלנו ש-
[math]\displaystyle{ \lim_{y\rightarrow y_0}\frac{f^{-1}(y)-f^{-1}(y_0)}{y-y_0}=\frac{1}{f'(x_0)} }[/math] זה נותן את הנדרש עפ"י הגדרת הנגזרת.
שאלה 2
נגדיר פונ' [math]\displaystyle{ h }[/math] על ידי [math]\displaystyle{ \forall x \in [0,2]: h(x)=f(x)-\frac{1}{x} }[/math].