המשפט היסודי של החשבון האינטגרלי: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 33: שורה 33:
בעצם, אנחנו צריכים להוכיח כאן שכאשר <math>\Delta x \to 0</math> ,  מתקיים בהכרח:
בעצם, אנחנו צריכים להוכיח כאן שכאשר <math>\Delta x \to 0</math> ,  מתקיים בהכרח:


<math>\frac{A(x_{0}+\Delta x)-A(x_{0})}{\Delta x}=\int_{x_{0}}^{x_{0}+\Delta x}f(t)dt \to f(x_{0})</math>
<math>\frac{A(x_{0}+\Delta x)-A(x_{0})}{\Delta x}=\frac{1}{\Delta x} \int_{x_{0}}^{x_{0}+\Delta x}f(t)dt \to f(x_{0})</math>
<u>טענה:<\u> נוכיח כי <math>lim_{\Delta x \to 0}\frac{1}{\Delta x} \int_{x_{0}}^{x_{0}+\Delta x}f(t)dt=0</math> .

גרסה מ־11:11, 28 במרץ 2012

המשפט

תהי [math]\displaystyle{ f(x) }[/math] מוגדרת, חסומה ואינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math]. נגדיר גם: [math]\displaystyle{ \forall x \in [a,b]: A(x):= \int_{a}^{x} f(t)dt }[/math] . אזי מתקיים:

א) [math]\displaystyle{ A(x) }[/math] רציפה.

ב)לכל [math]\displaystyle{ x_{0} \in [a,b] }[/math] שבו [math]\displaystyle{ f(x_{0}) }[/math] רציפה, [math]\displaystyle{ A(x) }[/math] גזירה ו- [math]\displaystyle{ A'(x_{0})=f(x_{0}) }[/math].

ג) אם [math]\displaystyle{ f(x) }[/math] רציפה בכל [math]\displaystyle{ [a,b] }[/math], ו-F פונקציה קדומה של f, מתקיימת נוסחת ניוטון-לייבניץ: [math]\displaystyle{ \int_{a}^{b} f(x)dx=F(b)-F(a) }[/math].

הוכחה

סעיף א'

נקח [math]\displaystyle{ x \in [a,b] }[/math] כלשהו ו-[math]\displaystyle{ \Delta x }[/math] "קטן" כך ש-[math]\displaystyle{ x+\Delta x \in [a,b] }[/math]. לפי הגדרה:[math]\displaystyle{ A(x+\Delta x)=\int_{a}^{x+\Delta x} f(t)dt }[/math] ולכן

[math]\displaystyle{ А(x+\Delta x)-A(x)=\int_{x}^{x+\Delta} f(t)dt }[/math]. נתון ש-f חסומה, נגיד [math]\displaystyle{ |f(x)| \leq M }[/math].

לכן מתקיים [math]\displaystyle{ |A(x+\Delta x)-A(x)|=|\int_{x}^{x+\Delta x} f(t)dt| \leq M|\Delta x| }[/math].

כעת נשאיף את [math]\displaystyle{ \Delta x \to 0 }[/math], אגף ימין שואף ל-0 . לכן:

[math]\displaystyle{ \lim_{\Delta x \to 0}|A(x+\Delta x)-A(x)|=0 }[/math] ומכך נובע ש:

[math]\displaystyle{ \lim_{\Delta x \to 0}[A(x+\Delta x)-A(x)]=0 }[/math] ולכן מתקיים תנאי הרציפות,

[math]\displaystyle{ \lim_{\Delta x \to 0}A(x+ \Delta x)= A(x) }[/math].

[math]\displaystyle{ \blacksquare }[/math]

סעיף ב'

כאן מניחים ש- [math]\displaystyle{ f(t) }[/math] רציפה בנקודה [math]\displaystyle{ x_{0} \in [a,b] }[/math] כלשהי. אנחנו צריכים להוכיח כי [math]\displaystyle{ A'(x_{0}) }[/math] קיימת ושווה ל- [math]\displaystyle{ f(x_{0}) }[/math]. נחזור לפונקציה [math]\displaystyle{ A(x+\Delta x)-A(x)=\int_{x}^{x+\Delta x}f(t)dt }[/math]. בעצם, אנחנו צריכים להוכיח כאן שכאשר [math]\displaystyle{ \Delta x \to 0 }[/math] , מתקיים בהכרח:

[math]\displaystyle{ \frac{A(x_{0}+\Delta x)-A(x_{0})}{\Delta x}=\frac{1}{\Delta x} \int_{x_{0}}^{x_{0}+\Delta x}f(t)dt \to f(x_{0}) }[/math] טענה:<\u> נוכיח כי [math]\displaystyle{ lim_{\Delta x \to 0}\frac{1}{\Delta x} \int_{x_{0}}^{x_{0}+\Delta x}f(t)dt=0 }[/math] .