משתמש:איתמר שטיין/הסבר הופכי: הבדלים בין גרסאות בדף
איתמר שטיין (שיחה | תרומות) (יצירת דף עם התוכן "כאשר אנו מבצעים חישובים בשדה <math>\mathbb{Z}_p</math> (נזכור ש <math>p</math> חייב להיות ראשוני), אנו נדרשים ...") |
איתמר שטיין (שיחה | תרומות) אין תקציר עריכה |
||
שורה 9: | שורה 9: | ||
שיטה זו טובה לשדות קטנים, אבל מה עושים אם רוצים למצוא הופכי ב <math>\mathbb{Z}_{101}</math>? בשיטה הזאת נצטרך לנסות 99 אפשרויות. | שיטה זו טובה לשדות קטנים, אבל מה עושים אם רוצים למצוא הופכי ב <math>\mathbb{Z}_{101}</math>? בשיטה הזאת נצטרך לנסות 99 אפשרויות. | ||
כדי להסביר איך מוצאים הופכי ב <math>\mathbb{Z}_p</math> נצטרך להביא כמה הקדמות מתורת המספרים. | |||
== כמה מושגים בתורת המספרים == | |||
הגדרה: יהיו <math>a,b\in \mathbb{Z}</math> אומרים ש <math>a</math> מחלק את <math>b</math> (ומסמנים <math>a|b</math>) | |||
אם קיים <math>c\in \mathbb{Z}</math> כך ש <math>ac=b</math>. | |||
הגדרה: יהיו <math>a,b\in \mathbb{Z}</math> המחלק המשותף המירבי של <math>a,b</math> (מסומן <math>gcd(a,b)</math>) הוא המספר הגדול ביותר שמחלק גם את <math>a</math> וגם את <math>b</math>. | |||
כלומר <math>gcd(a,b)=max\{g\in \mathbb{Z}\mid g|a\quad g|b\}</math> | |||
ההגדרה הזאת בעייתית כאשר <math>a=b=0</math> במצב זה אומרים ש <math>gcd(0,0)=0</math>. |
גרסה מ־10:35, 11 ביולי 2012
כאשר אנו מבצעים חישובים בשדה [math]\displaystyle{ \mathbb{Z}_p }[/math] (נזכור ש [math]\displaystyle{ p }[/math] חייב להיות ראשוני), אנו נדרשים לפעמים לחשב הופכי לאיבר מסוים בשדה.
שיטה אחת לבצע זאת היא ע"י ניחוש, אם [math]\displaystyle{ a\in \mathbb{Z}_p }[/math] אז יש [math]\displaystyle{ p }[/math] איברים שיכולים להיות הופכי: [math]\displaystyle{ \{0,1,\ldots,p-1\} }[/math]
(למעשה יש פחות, כי [math]\displaystyle{ 0 }[/math] לעולם לא יהיה הופכי ו [math]\displaystyle{ 1 }[/math] הופכי רק ב[math]\displaystyle{ \mathbb{Z}_2 }[/math])
אפשר פשוט לנסות את כל האפשרויות עד שמוצאים הופכי.
שיטה זו טובה לשדות קטנים, אבל מה עושים אם רוצים למצוא הופכי ב [math]\displaystyle{ \mathbb{Z}_{101} }[/math]? בשיטה הזאת נצטרך לנסות 99 אפשרויות.
כדי להסביר איך מוצאים הופכי ב [math]\displaystyle{ \mathbb{Z}_p }[/math] נצטרך להביא כמה הקדמות מתורת המספרים.
כמה מושגים בתורת המספרים
הגדרה: יהיו [math]\displaystyle{ a,b\in \mathbb{Z} }[/math] אומרים ש [math]\displaystyle{ a }[/math] מחלק את [math]\displaystyle{ b }[/math] (ומסמנים [math]\displaystyle{ a|b }[/math]) אם קיים [math]\displaystyle{ c\in \mathbb{Z} }[/math] כך ש [math]\displaystyle{ ac=b }[/math].
הגדרה: יהיו [math]\displaystyle{ a,b\in \mathbb{Z} }[/math] המחלק המשותף המירבי של [math]\displaystyle{ a,b }[/math] (מסומן [math]\displaystyle{ gcd(a,b) }[/math]) הוא המספר הגדול ביותר שמחלק גם את [math]\displaystyle{ a }[/math] וגם את [math]\displaystyle{ b }[/math].
כלומר [math]\displaystyle{ gcd(a,b)=max\{g\in \mathbb{Z}\mid g|a\quad g|b\} }[/math]
ההגדרה הזאת בעייתית כאשר [math]\displaystyle{ a=b=0 }[/math] במצב זה אומרים ש [math]\displaystyle{ gcd(0,0)=0 }[/math].