משתמש:איתמר שטיין: הבדלים בין גרסאות בדף
איתמר שטיין (שיחה | תרומות) אין תקציר עריכה |
איתמר שטיין (שיחה | תרומות) אין תקציר עריכה |
||
שורה 9: | שורה 9: | ||
הוכחה לכך שדרגת העמודות של מטריצה שווה לדרגת השורות של מטריצה: | הוכחה לכך שדרגת העמודות של מטריצה שווה לדרגת השורות של מטריצה: | ||
תהי <math>A \in \mathbb{F}^{m\times n}</math> מטריצה כלשהיא ונניח שדרגת העמודות שלה היא <math>k</math>. | תהי <math>A \in \mathbb{F}^{m\times n}</math> מטריצה כלשהיא ונניח שדרגת העמודות שלה היא <math>k</math>. | ||
כלומר <math>dim{C(A)}=k</math>. | כלומר <math>dim{C(A)}=k</math>. | ||
ההוכחה מחולקת לכמה שלבים. | |||
שלב א': למצוא מטריצות <math>D,R</math> כך שמספר העמודות ב <math>D</math> ומספר השורות ב <math>R</math> הם <math>k</math>. ומתקיים <math>A=DR</math>. | |||
יהיה <math>B=\{b_1,\ldots , b_k\}\subseteq \mathbb{F}^m</math> בסיס עבור <math>C(A)</math>. | יהיה <math>B=\{b_1,\ldots , b_k\}\subseteq \mathbb{F}^m</math> בסיס עבור <math>C(A)</math>. | ||
שורה 31: | שורה 37: | ||
כלומר <math>C_i(A) = \alpha_{1,i}b_1+\alpha_{2,i}b_2+\ldots+\alpha_{k,i}b_k</math> | כלומר <math>C_i(A) = \alpha_{1,i}b_1+\alpha_{2,i}b_2+\ldots+\alpha_{k,i}b_k</math> | ||
כלומר <math> | כלומר <math> C_i(A)=\begin{bmatrix} |&|&&| \\ b_1 & b_2 & \ldots & b_k \\ |&|&&| \end{bmatrix} \begin{bmatrix} \alpha_{1,i} \\ \alpha_{2,i} \\ \vdots \\ \alpha_{k,i} \end{bmatrix} = D\begin{bmatrix} \alpha_{1,i} \\ \alpha_{2,i} \\ \vdots \\ \alpha_{k,i} \end{bmatrix} </math> | ||
נגדיר מטריצה <math>R \in \mathbb{F}^{k \times n}</math> לפי | |||
<math>R_{i,j}=\alpha_{i,j}</math>. | |||
נשים לב ש הכפל <math>DR</math> מוגדר היות ומספר העמודות ב <math>D</math> ומספר השורות ב <math>R</math> הם <math>k</math>. | |||
נקבל ש<math>C_i(DR)=DC_i(R)=D\begin{bmatrix} \alpha_{1,i} \\ \alpha_{2,i} \\ \vdots \\ \alpha_{k,i} \end{bmatrix}=C_i(A)</math> | |||
כלומר <math>DR=A</math>. | |||
סוף שלב א'. | |||
שלב ב': לראות ש <math>A=DR</math> אומר שדרגת השורות של <math>A</math> קטנה מדרגת השורות של <math>R</math> ולהסיק מסקנות. | |||
לפי כפל שורה שורה | |||
<math>R_i(A)=R_i(D)R=D_{i,1}R_1(R)+D_{i,2}R_2(R)+\ldots + D_{i,k}R_k(R)</math> | |||
כלומר | |||
<math>R_i(A) \in span\{R_1(R),R_2(R), \ldots , R_k(R)\}</math> | |||
לכן <math>R(A) \subseteq R(R)</math> | |||
ולכן <math>dimR(A) \leq dimR(R) \leq k = dimC(A)</math> | |||
(מרחב השורות של המטריצה <math>R</math> לא יכול להיות יותר מ <math>k</math> כי יש ב <math>R</math> רק <math>k</math> שורות.) | |||
זה מוכיח שלכל מטריצה <math>A</math> מתקיים ש <math>dimR(A) \leq dimC(A)</math>. | |||
סוף שלב ב' | |||
שלב ג': סיום. | |||
נשים לב ש <math>dimC(A) = dim R(A^t) \leq dimC(A^t) = dimR(A)</math> | |||
בסה"כ קיבלנו <math>dimC(A) \leq dimR(A)</math> וגם <math>dimR(A) \leq dimC(A)</math> ולכן | |||
<math>dimR(A)=dimC(A)</math> מש"ל. |
גרסה מ־13:38, 26 באוגוסט 2012
נזכור כי דרגת העמודות של מטריצה [math]\displaystyle{ A }[/math] היא מימד מרחב העמודות (המרחב הנפרש על ידי עמודות [math]\displaystyle{ A }[/math]).
ודרגת השורות של מטריצה [math]\displaystyle{ A }[/math] היא מימד מרחב השורות (המרחב הנפרש על ידי שורות [math]\displaystyle{ A }[/math]).
הוכחה לכך שדרגת העמודות של מטריצה שווה לדרגת השורות של מטריצה:
תהי [math]\displaystyle{ A \in \mathbb{F}^{m\times n} }[/math] מטריצה כלשהיא ונניח שדרגת העמודות שלה היא [math]\displaystyle{ k }[/math].
כלומר [math]\displaystyle{ dim{C(A)}=k }[/math].
ההוכחה מחולקת לכמה שלבים.
שלב א': למצוא מטריצות [math]\displaystyle{ D,R }[/math] כך שמספר העמודות ב [math]\displaystyle{ D }[/math] ומספר השורות ב [math]\displaystyle{ R }[/math] הם [math]\displaystyle{ k }[/math]. ומתקיים [math]\displaystyle{ A=DR }[/math].
יהיה [math]\displaystyle{ B=\{b_1,\ldots , b_k\}\subseteq \mathbb{F}^m }[/math] בסיס עבור [math]\displaystyle{ C(A) }[/math].
נסמן ב [math]\displaystyle{ D }[/math] את המטריצה שעמודותיה הם איברי [math]\displaystyle{ B }[/math].
כלומר
[math]\displaystyle{ D=\begin{bmatrix} |&|&&| \\ b_1 & b_2 & \ldots & b_k \\ |&|&&| \end{bmatrix}\in \mathbb{F}^{m\times k} }[/math]
נשים לב שבגלל ש [math]\displaystyle{ B }[/math] בסיס ל [math]\displaystyle{ C(A) }[/math] הוא פורש כל עמודה של [math]\displaystyle{ A }[/math].
כלומר לכל עמודה [math]\displaystyle{ C_i(A) }[/math] מתקיים ש [math]\displaystyle{ C_i(A)\in span\{b_1,\ldots, b_k\} }[/math].
נסמן [math]\displaystyle{ [C_i(A)]_B=\begin{bmatrix} \alpha_{1,i} \\ \alpha_{2,i} \\ \vdots \\ \alpha_{k,i} \end{bmatrix} }[/math]
כלומר [math]\displaystyle{ C_i(A) = \alpha_{1,i}b_1+\alpha_{2,i}b_2+\ldots+\alpha_{k,i}b_k }[/math]
כלומר [math]\displaystyle{ C_i(A)=\begin{bmatrix} |&|&&| \\ b_1 & b_2 & \ldots & b_k \\ |&|&&| \end{bmatrix} \begin{bmatrix} \alpha_{1,i} \\ \alpha_{2,i} \\ \vdots \\ \alpha_{k,i} \end{bmatrix} = D\begin{bmatrix} \alpha_{1,i} \\ \alpha_{2,i} \\ \vdots \\ \alpha_{k,i} \end{bmatrix} }[/math]
נגדיר מטריצה [math]\displaystyle{ R \in \mathbb{F}^{k \times n} }[/math] לפי [math]\displaystyle{ R_{i,j}=\alpha_{i,j} }[/math].
נשים לב ש הכפל [math]\displaystyle{ DR }[/math] מוגדר היות ומספר העמודות ב [math]\displaystyle{ D }[/math] ומספר השורות ב [math]\displaystyle{ R }[/math] הם [math]\displaystyle{ k }[/math].
נקבל ש[math]\displaystyle{ C_i(DR)=DC_i(R)=D\begin{bmatrix} \alpha_{1,i} \\ \alpha_{2,i} \\ \vdots \\ \alpha_{k,i} \end{bmatrix}=C_i(A) }[/math]
כלומר [math]\displaystyle{ DR=A }[/math].
סוף שלב א'.
שלב ב': לראות ש [math]\displaystyle{ A=DR }[/math] אומר שדרגת השורות של [math]\displaystyle{ A }[/math] קטנה מדרגת השורות של [math]\displaystyle{ R }[/math] ולהסיק מסקנות.
לפי כפל שורה שורה
[math]\displaystyle{ R_i(A)=R_i(D)R=D_{i,1}R_1(R)+D_{i,2}R_2(R)+\ldots + D_{i,k}R_k(R) }[/math]
כלומר
[math]\displaystyle{ R_i(A) \in span\{R_1(R),R_2(R), \ldots , R_k(R)\} }[/math]
לכן [math]\displaystyle{ R(A) \subseteq R(R) }[/math]
ולכן [math]\displaystyle{ dimR(A) \leq dimR(R) \leq k = dimC(A) }[/math]
(מרחב השורות של המטריצה [math]\displaystyle{ R }[/math] לא יכול להיות יותר מ [math]\displaystyle{ k }[/math] כי יש ב [math]\displaystyle{ R }[/math] רק [math]\displaystyle{ k }[/math] שורות.)
זה מוכיח שלכל מטריצה [math]\displaystyle{ A }[/math] מתקיים ש [math]\displaystyle{ dimR(A) \leq dimC(A) }[/math].
סוף שלב ב'
שלב ג': סיום.
נשים לב ש [math]\displaystyle{ dimC(A) = dim R(A^t) \leq dimC(A^t) = dimR(A) }[/math]
בסה"כ קיבלנו [math]\displaystyle{ dimC(A) \leq dimR(A) }[/math] וגם [math]\displaystyle{ dimR(A) \leq dimC(A) }[/math] ולכן
[math]\displaystyle{ dimR(A)=dimC(A) }[/math] מש"ל.