שיחה:88-230 אינפי 3 סמסטר א תשעג/תיכוניסטים: הבדלים בין גרסאות בדף
איתמר שטיין (שיחה | תרומות) |
איתמר שטיין (שיחה | תרומות) |
||
שורה 110: | שורה 110: | ||
לא הבנתי את הפתרון - אפשר הסבר מפורט ? | לא הבנתי את הפתרון - אפשר הסבר מפורט ? | ||
תודה | תודה | ||
תשובה: הפתרון הוא <math>(-f_x(x_0),-f_y(x_0),-||\nabla(f)(x_0)||^2)</math> כאשר <math>x_0</math> היא הנקודה המדוברת. | |||
(שימו לב שזה וקטור כיוון, האורך שלו לא מעניין, רק הכיוון). | |||
הסבר: | |||
ראשית נסביר את 2 הקומפוננטות הראשונות: <math>-f_x(x_0),-f_y(x_0)</math> | |||
היות ו<math>\nabla f(a)\cdot u = D_u(f)(a)</math> (אנחנו הרי מניחים ש <math>f</math> דיפרנציאבילית). | |||
אז מתקיים שאם <math>||u||</math> וקטור יחידה אז <math>\nabla f(a)\cdot u = \frac{\partial f}{\partial u}(a)</math> כאשר | |||
<math>\frac{\partial f}{\partial u}(a)</math> מייצג נגזרת כיוונית בכיוון <math>u</math> בנקודה <math>a</math>. | |||
לפי אי שוויון קושי שורץ | |||
<math> |\frac{\partial f}{\partial u}(a)|=|\nabla f(a)\cdot u|\leq ||\nabla f(a)||||u||=||\nabla f(a)||</math> | |||
לכן <math>||\nabla f(a)||</math> חוסם את ערכי הנגזרת הכיוונית האפשריים. | |||
קל לראות שמתקבל <math>max</math> כאשר <math>u=\frac{\nabla f(a)}{||\nabla f(a)||}</math> ו min כאשר | |||
<math>u=-\frac{\nabla f(a)}{||\nabla f(a)||}</math>. | |||
במילים אחרות: נגזרת כיוונית מירבית מתקבלת בכיוון הגרדיאנט ונגזרת כיוונית מזערית מתקבלת בכיוון מינוס הגרדיאנט. | |||
המים ירצו לנוע כמה שיותר מהר למטה - לכיוון שבו השיפוע קטן ביותר = לכיוון שבו הנגזרת הכיוונית קטנה ביותר = לכיוון מינוס הגרדיאנט בנקודה. | |||
זה מסביר את שיעורי ה<math>x,y</math>. | |||
נותר להסביר את שיעור ה <math>z</math>. | |||
הכיוון שאליו הכדור יפנה יהיה וקטור שנמצא על המישור המשיק למשטח בנקודה זו. (לצורך העניין זה נדרש מההגדרה של המושג - כיוון שאליו פונים) | |||
המישור המשיק הוא כל הוקטורים שניצבים לגרדיאנט של <math>F(x,y,z)=f(x,y)-z=0</math> | |||
הגרדיאנט הוא <math>(f_x,f_y,-1)</math>. כדי ש <math>(-f_x,-f_y,z)</math> יהיה ניצב אליו. צריך ש | |||
<math>z=-f_x^2-f_y^2=-||\nabla f||^2</math>. | |||
מקווה שזה ברור.--[[משתמש:איתמר שטיין|איתמר שטיין]] 23:01, 1 בדצמבר 2012 (IST) |
גרסה מ־21:01, 1 בדצמבר 2012
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
שאלות
תשובה לשאלה של אוהד:
אפשר להניח שפונקציות אלמנטריות הן רציפות (ולכן אפשר "סתם" להציב בהן את הגבולות - כל עוד אין חלוקה באפס ובעיות דומות). כרגע זאת באמת סתם הנחה בלי להבין למה. נראה לזה הצדקה כשנגיע לרציפות - בעוד שבוע שבועיים.
ודרך אגב - אני אשמח אם תשאלו שאלות כאן ולא דרך facebook.--איתמר שטיין 10:41, 30 באוקטובר 2012 (IST)
תרגיל 3 שאלה 1
הפונקציה f מוגדרת מE לממשיים, אבל אם הראשית או כל נקודה על הישר y=0 נמצאים בE אז הפונקציה לא מוגדרת באותן הנקודות.
השאלה היא האם אפשר להניח שהנקודות הנ"ל לא נמצאות בE?
תשובה:כן, זאת הייתה הכוונה. אפשר להניח שב [math]\displaystyle{ E }[/math] אין נקודות עם [math]\displaystyle{ y=0 }[/math].--איתמר שטיין 13:03, 13 בנובמבר 2012 (IST)
תרגיל 3 שאלה 2.
אפשר לקבל הכוונה לא',
h(y) תלויה בערכי הx שאתה מציב בה,זאת אומרת h1(y)=f(x', y) h2(y)=f(x, y) הינן פונקציות שונות כל עוד x' שונה מx
רציתי לפרק את הבעיה לפי הצירים,(להביט ברציפות על x וברציפות על y) וודבר זה מוביל לבעייתיות, שכן בעבור כל x הפונקציה h(y) שונה ויש לדרוש דלתא אחר בהגדרת הגבול.
כמו שאמרנו - אתם צודקים, הייתה טעות בשאלה.--איתמר שטיין 23:48, 18 בנובמבר 2012 (IST)
תרגיל 4 שאלות 4 5
לדעתי יש טעות בשאלה משום שלא נתונות לנו ערכי הנגזרות החלקיות של פונקציה F(שאלה 4) בנוסף בשאלה 5 - האם מדובר על נגזרות חלקיות ?
תשובה: בשאלה 4 אין טעות. (אני חושב שיש אפילו נתון מיותר).
לגבי שאלה 5, כן. [math]\displaystyle{ f_x,f_y }[/math] הן הנגזרות החלקיות לפי [math]\displaystyle{ x,y }[/math] בהתאמה. זה מקובל פעמים רבות לסמן אותם בלי התג של נגזרת.--איתמר שטיין 08:32, 21 בנובמבר 2012 (IST)
עדכון: לגבי שאלה 4. דיברתי עם מיכאל (שהוא גם כתב את השאלה וגם מבין באנליזה הרבה יותר ממני), והוא מסכים שהשאלה במתכונתה הנוכחית לא מספיק ברורה.
במקום [math]\displaystyle{ \frac{\partial z}{\partial u},\quad \frac{\partial z}{\partial v} }[/math]
אתם יכולים להניח שכתוב [math]\displaystyle{ \frac{\partial f}{\partial u},\quad \frac{\partial f}{\partial v} }[/math].
נתקן את הקובץ בקרוב.
(כשכותבים [math]\displaystyle{ \frac{\partial z}{\partial u} }[/math], הכוונה היא הנגזרת במשתנה הראשון של [math]\displaystyle{ z }[/math], כאשר הוא מוגדר כפונקציה של [math]\displaystyle{ u,v }[/math] שזה שווה ל [math]\displaystyle{ \frac{\partial f}{\partial u} }[/math] במקרה שלנו).
דרך אגב למי שרוצה: אם אין לי טעות חישוב, מספיק לדעת את [math]\displaystyle{ \frac{\partial z}{\partial u} }[/math] כדי לחשב את הערך המבוקש בשאלה. --איתמר שטיין 12:20, 21 בנובמבר 2012 (IST)
תרגיל 4 שאלה 4ב
האם למשוואה עם הנגזרות החלקיות שם יש משמעות גיאומטרית יפה (או, האם הפתרונות הן צורות גיאומטריות יפות)? קשה לי לדמיין אותו (גם אחרי המרת המשוואה כדרוש בשאלה)
- אבוי! הייתה לי טעות קטנה, כעת המשמעות של המשוואה מאוד יפה :)
תרגיל 4 שאלה 2 סעיפים א', ב'
בסעיפים אלה הכוונה לנגזרת החלקית לפי x?
תשובה: כן. שאלו על הסימון הזה כמה שאלות קודם.--איתמר שטיין 23:09, 24 בנובמבר 2012 (IST)
פתרונות לתרגילים
אפשר בבקשה לפרסם את הפתרונות לשיעורי הבית?
תשובה: כן, נתחיל השבוע להעלות פתרונות.--איתמר שטיין 23:12, 24 בנובמבר 2012 (IST)
נגזרת מכוונת
ההגדרה הראשונית עם הגבול, תופסת לכל וקטור או רק לוקטור יחידה?
וכנ"ל לגבי המשפט בנוגע למצב בו f דיפרנציאבילית?
תשובה: אני מקווה שהבנתי את השאלה נכון.
אם מסמנים [math]\displaystyle{ D_u(f)(a)=\lim_{t\rightarrow 0}\frac{f(a+tu)-f(a)}{t} }[/math] כמו שאני סימנתי.
אז הגבול הזה הוא הנגזרת הכיוונית בכיוון [math]\displaystyle{ u }[/math] רק כש [math]\displaystyle{ u }[/math] מנורמל. אם הוא לא מנורמל אז ייתכן שיהיה גבול אבל הוא לא הנגזרת הכיוונית - יהיה צריך לנרמל.
כאשר [math]\displaystyle{ f }[/math] דיפרנציאבילית, מתקיים לכל [math]\displaystyle{ u }[/math] (לאו דווקא מנורמל), כי
[math]\displaystyle{ \nabla f(a) \cdot u=D_u(f)(a) }[/math]
אבל רק כאשר [math]\displaystyle{ u }[/math] מנורמל זאת באמת הנגזרת הכיוונית.--איתמר שטיין 15:36, 30 בנובמבר 2012 (IST)
עוד הערה: גם אם [math]\displaystyle{ u }[/math] לא וקטור יחידה, ברור ש [math]\displaystyle{ D_u(f)(a) }[/math] קיים אם ורק אם הנגזרת הכיוונית בכיוון [math]\displaystyle{ u }[/math] קיימת.
לכן עבור [math]\displaystyle{ f }[/math] דיפרנציאבילית ב [math]\displaystyle{ a }[/math], הביטוי [math]\displaystyle{ D_u(f)(a) }[/math] תמיד מוגדר.--איתמר שטיין 15:39, 30 בנובמבר 2012 (IST)
תרגיל 5 שאלה 7
למה הכוונה ב Ux? --ג.יפית 14:46, 1 בדצמבר 2012 (IST)
תשובה: אני לא רואה איפה יש [math]\displaystyle{ U_x }[/math] בשאלה 7. באופן כללי [math]\displaystyle{ f_x\quad g_{st} }[/math] וכדומה מציינים נגזרות חלקיות.--איתמר שטיין 22:41, 1 בדצמבר 2012 (IST)
נגזרת מכוונת
היי בתרגול האחרון ניתנה שאלה :נתונה גבעה (z=F(x,y יש מים בנקודה מסויימת , לאיזה כיוון בR3 יפנו המים . לא הבנתי את הפתרון - אפשר הסבר מפורט ? תודה
תשובה: הפתרון הוא [math]\displaystyle{ (-f_x(x_0),-f_y(x_0),-||\nabla(f)(x_0)||^2) }[/math] כאשר [math]\displaystyle{ x_0 }[/math] היא הנקודה המדוברת.
(שימו לב שזה וקטור כיוון, האורך שלו לא מעניין, רק הכיוון).
הסבר:
ראשית נסביר את 2 הקומפוננטות הראשונות: [math]\displaystyle{ -f_x(x_0),-f_y(x_0) }[/math]
היות ו[math]\displaystyle{ \nabla f(a)\cdot u = D_u(f)(a) }[/math] (אנחנו הרי מניחים ש [math]\displaystyle{ f }[/math] דיפרנציאבילית).
אז מתקיים שאם [math]\displaystyle{ ||u|| }[/math] וקטור יחידה אז [math]\displaystyle{ \nabla f(a)\cdot u = \frac{\partial f}{\partial u}(a) }[/math] כאשר [math]\displaystyle{ \frac{\partial f}{\partial u}(a) }[/math] מייצג נגזרת כיוונית בכיוון [math]\displaystyle{ u }[/math] בנקודה [math]\displaystyle{ a }[/math].
לפי אי שוויון קושי שורץ
[math]\displaystyle{ |\frac{\partial f}{\partial u}(a)|=|\nabla f(a)\cdot u|\leq ||\nabla f(a)||||u||=||\nabla f(a)|| }[/math]
לכן [math]\displaystyle{ ||\nabla f(a)|| }[/math] חוסם את ערכי הנגזרת הכיוונית האפשריים.
קל לראות שמתקבל [math]\displaystyle{ max }[/math] כאשר [math]\displaystyle{ u=\frac{\nabla f(a)}{||\nabla f(a)||} }[/math] ו min כאשר [math]\displaystyle{ u=-\frac{\nabla f(a)}{||\nabla f(a)||} }[/math].
במילים אחרות: נגזרת כיוונית מירבית מתקבלת בכיוון הגרדיאנט ונגזרת כיוונית מזערית מתקבלת בכיוון מינוס הגרדיאנט.
המים ירצו לנוע כמה שיותר מהר למטה - לכיוון שבו השיפוע קטן ביותר = לכיוון שבו הנגזרת הכיוונית קטנה ביותר = לכיוון מינוס הגרדיאנט בנקודה.
זה מסביר את שיעורי ה[math]\displaystyle{ x,y }[/math].
נותר להסביר את שיעור ה [math]\displaystyle{ z }[/math].
הכיוון שאליו הכדור יפנה יהיה וקטור שנמצא על המישור המשיק למשטח בנקודה זו. (לצורך העניין זה נדרש מההגדרה של המושג - כיוון שאליו פונים)
המישור המשיק הוא כל הוקטורים שניצבים לגרדיאנט של [math]\displaystyle{ F(x,y,z)=f(x,y)-z=0 }[/math]
הגרדיאנט הוא [math]\displaystyle{ (f_x,f_y,-1) }[/math]. כדי ש [math]\displaystyle{ (-f_x,-f_y,z) }[/math] יהיה ניצב אליו. צריך ש [math]\displaystyle{ z=-f_x^2-f_y^2=-||\nabla f||^2 }[/math].
מקווה שזה ברור.--איתמר שטיין 23:01, 1 בדצמבר 2012 (IST)