שיחה:88-113 תשעג סמסטר ב: הבדלים בין גרסאות בדף
שורה 41: | שורה 41: | ||
להראות ע"ע שהריבוב האלג' שלו לא שווה לגיא' שלו? | להראות ע"ע שהריבוב האלג' שלו לא שווה לגיא' שלו? | ||
'''>>ראשית, מעט לוגיקה: במשפט הראשון דרשת "מספיק" (X=>Y), אך במשפט השני תיארת "הכרח" (Y=>X) (שתואר ע"י "מספיק" של השלילות (לא X => לא Y)) ולכן זה וודאי אינו נכון '''X <= Y''' אז '''(לא Y) => (לא X)''' ולא '''Y <= X''' | '''>>ראשית, מעט לוגיקה: במשפט הראשון דרשת "מספיק" (X=>Y), אך במשפט השני תיארת "הכרח" (Y=>X) (שתואר ע"י "מספיק" של השלילות (לא X => לא Y)) ולכן זה וודאי אינו נכון. | ||
'''X <= Y''' אז '''(לא Y) => (לא X)''' ולא '''Y <= X''' | |||
''' מספיק ש-X כדי ש-Y אומר: X גורר Y, או: אם X אז Y. | ''' מספיק ש-X כדי ש-Y אומר: X גורר Y, או: אם X אז Y. |
גרסה מ־08:58, 12 באפריל 2013
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
שאלות
הגשת התרגילים
מכיוון שנעשו קיצוצים ועכשיו בודקים לנו רק שאלה מכל תרגיל; האם נקבל הודעה איזו שאלה נבדקת ונגיש רק אותה, או שצריך להגיש את התרגיל במלואו?
>> מגישים את התרגיל במלואו
תרגילים 2+3
ליד תרגיל 2 כתוב "רשות", ליד תרגיל 3 כתוב "לא להגשה". האם זה רלוונטי לשתי הקבוצות? מאחר ובתרגול לא נאמר לנו דבר על כן שתרגיל 2 לא חובה ותרגיל 3 כלל לא צריך להגיש. (נאמר שאת שניהם נגיש לאחר פסח). תודה וחג שמח.
>> זה מידע שגוי שנרשם ע"י גורם שנחסם כרגע, העניין טופל, התרגילים להגשה. עדי
תרגיל 2, שאלה 1ב
אני לא מצליח להבין מה מבקשים ממני בשאלה 1 סעיף ב', אם תוכלי לעזור לי לפרש את ההנחייה אודה לך מאוד
>>הצבת מטריצה A בפולינום אומרת:
בכל מקום שיש משתנה X נציב את A, ובמקום האיבר החופשי [math]\displaystyle{ a }[/math] של הפולינום נשים את המטריצה הסקלרית [math]\displaystyle{ aI }[/math]
(אחרת לא ניתן לחבר בין הגורמים)
עדי
ריבובים ולכסינות
האם זה שריבוב אלג' של כל ע"ע שווה לגיאומטרי, זה תנאי מספיק אבל לא הכרחי ללכסינות?
כלומר האם כדי להראות שמטריצה היא לא לכסינה מספיק להראות ע"ע שהריבוב האלג' שלו לא שווה לגיא' שלו?
>>ראשית, מעט לוגיקה: במשפט הראשון דרשת "מספיק" (X=>Y), אך במשפט השני תיארת "הכרח" (Y=>X) (שתואר ע"י "מספיק" של השלילות (לא X => לא Y)) ולכן זה וודאי אינו נכון.
X <= Y אז (לא Y) => (לא X) ולא Y <= X
מספיק ש-X כדי ש-Y אומר: X גורר Y, או: אם X אז Y.
X הכרחי כדי ש-Y אומר: (לא X) גורר (לא Y), או: אם (לא X) אז (לא Y) שזה שקול ל- Y גורר X.
כלומר, מספיק והכרחי זה "אם ורק אם", אך שים לב שאתה מתאר אותם בהתאם, מספיק זו הגרירה בכיוון הראשון, והכרחי בכיוון השני.
אלו התנאים:
לכסינה => הפ"א מתפרק לגורמים לינארים+הריבובים של כל ע"ע שווים
הפ"א מתפרק לגורמים לינארים+הריבובים של כל ע"ע שווים => לכסינה
כלומר, שיוויון הריבובים הוא הכרחי ללכסינות אך לא מספיק, צריך גם שהפולנום יהיה מל"ל. למשל [math]\displaystyle{ (x-2)(x^2+1) }[/math] מעל הממשיים. הע"ע היחיד הוא 2 עם ר"א 1 ויתכן כי גם הריבוי הגיאומטרי יהיה 1. אבל הוא איננו מל"ל, ולכן המט' אינה לכסינה.
מל"ל כי: נצטרך n ע"ע (כולל ריבויים) ע"מ לקבל מטריצה אלכסונית D, מאותו גודל ודומה למקורית. שיוויון הריבויים כי: נרצה שיהיו n ו"ע, ע"מ שיהיה בסיס ו"ע לבניית המטריצה ההפיכה המלכסנת P.
לכן כדי להראות שמטריצה היא לא לכסינה אכן מספיק להראות ע"ע שהריבוב האלג' שלו לא שווה לגיא' שלו:
X <= Y אז (לא Y) => (לא X). או במקרה שלנו: לכסינות מספיקה בשביל שוייון ריבויים לכן אי שיוויון ריבויים בהכרח מעיד על אי לכסינות
עדי