|
|
שורה 1: |
שורה 1: |
| =שאלות=
| | היי |
| שאלה בקשר לסעיף א' בשאלה 1
| |
|
| |
|
| צ"ל שלכל A מוכל ב-Y מתקיים ([f(f^-1[A מוכל ב-A
| | בקשר לשאלה 2 : |
|
| |
|
| איך מתחילים את ההוכחה?
| | בהרצאה המרצה נתן את הטענה הבאה : |
|
| |
|
| מניחים שלכל A שמוכל ב-Y מתקיים:
| | u מוכלת ב-X אז |
|
| |
|
| y שייך ל- ([f(f^-1[A ומראים ש y שייך לA?
| | (u משלים ב-X ) חיתוך A שווה ל- (u חיתוך A) משלים ב-A |
|
| |
|
| ההכלה נובעת מהגדרות אבל לא הבנתי איך מתייחסים לנתון שלכל A מוכל ב-Y.
| |
|
| |
|
| תודה רבה!
| | מהי ההגדרה למשלים ב- A (ידוע ש A תת מרחב של X)? |
| ::הטענה היא שההכלה מתקיימת לכל קבוצה A. לביטוי <math>f^{-1}[A]</math> יש משמעות רק כש A תת קבוצה של Y. אכן, צריך לקחת תת קבוצה שרירותית A של Y ובאמת להראות את ההכלה כפי שציינת ברמה של איברים. ההכלה נובעת מההגדרות אבל צריך להראות איך בדיוק. --[[משתמש:מני ש.|מני]] 01:04, 28 בפברואר 2013 (IST)
| |
|
| |
|
| | אני מנסה להראות הכלה דו כיוונית אבל אני לא יודע מה זה אומר (u חיתוך A) משלים ב-A? |
|
| |
|
| | | תודה רבה! |
| | |
| | |
| ===שאלה 5===
| |
| שאני מנסה להוכיח סימטריות אני תמיד מגיע למצב שבו אני מניח אי שליליות.
| |
| אני אמור להניח זאת? אם לא אני לא מבין איך להוכיח את זה?
| |
| | |
| :(לא מתרגל) ניתן להוכיח חיובית, פשוט תצא מהעובדה שהמרחק בין איבר לעצמו הוא אפס.
| |
| | |
| ::תודה
| |
| | |
| == תרגיל 1 שאלה 4 ==
| |
| | |
| האם הפונקציה כפי שהוגדרה בתרגיל:
| |
| <math> d(x,y)= \begin{cases} 0 & x=y \\ \frac {1} {min \{j \in \mathbb {N}:x_j\ne y_j\}} & \ x \ne y \end{cases}
| |
| </math>
| |
| | |
| שקולה לפונקציה:
| |
| <math> d(i,j)= \begin{cases} 0 & i=j \\ \frac {1} {min \{i,j\}} & \ i \ne j \end{cases}
| |
| </math>?
| |
| האינדקסים ב-x וב-y קצת מבלבלים אותי.
| |
| | |
| :(לא מתרגל) לפי מה שאני מבין, לא. האינדקסים יכולים להיות שווים והפונקציה עדיין לא תתאפס-'''האיברים''' צריכים להיות שונים
| |
| | |
| ::הבנתי את הטעות שלי (לא שמתי לב, שבשאלה הגדירו שכל איבר הוא בעצם סדרה). תודה.
| |
| | |
| == תרגיל 2 שאלה 5 ==
| |
| | |
| בסעיף א', האם
| |
| <math>
| |
| \sigma_Y(y_1,y_2) = \sigma(y_1,y_2)
| |
| </math>
| |
| כאשר
| |
| <math>
| |
| y_1,y_2 \in Y
| |
| </math>
| |
| ??
| |
| <br/ >
| |
| או שהמטריקות יכולות להיות שונות לחלוטין?
| |
| ::ההגדרה של תת מרחב מטרי ניתנה בהרצאה. --[[משתמש:מני ש.|מני]] 12:24, 12 במרץ 2013 (IST)
| |
| == תרגיל 3 ==
| |
| כשמדברים על קבוצות פתוחות וסגורות בR^n מהי המטריקה??,האוקילדית??,ועוד שאלה,האם מותר להשתמש בתכונות של פונקציות רציפות בR^n (שגם סכום,הרכבה,כפל וכו' רציף)?
| |
| ::כן וכן.--[[משתמש:מני ש.|מני]] 12:06, 15 במרץ 2013 (IST)
| |
| | |
| == תרגיל 3 שאלה אחרונה ==
| |
| | |
| האם מדובר בפונקציה (f(x,y ?
| |
| והאם הכוונה ש – f=1 כאשר x*y=0?
| |
| | |
| כן, זה היה אמור להיות <math>f(x,y)</math>. וכן גם לשאלה השניה. --[[משתמש:לואי פולב|לואי]] 14:12, 20 במרץ 2013 (IST)
| |
| האם צריך להוכיח שדטרמיננטה היא פונקציה רציפה?
| |
| ::צריך להסביר למה היא רציפה. --[[משתמש:מני ש.|מני]] 13:24, 25 במרץ 2013 (IST)
| |
| | |
| == תרגיל 3 שאלה 6 ==
| |
| | |
| האם בשאלה 6 מדובר על המטריקות האוקלידיות הסטנדרטיות על <math>\mathbb {R}</math> ועל <math>\mathbb {R}^2</math> או על מטריקות כלשהן שמוגדרות על מרחבים אלו?
| |
| ::מדובר באוקלידיות. --[[משתמש:מני ש.|מני]] 10:00, 28 במרץ 2013 (IST)
| |
| | |
| == תרגיל 3 שאלה 3 ==
| |
| | |
| למה התכוונתם ב
| |
| (a)n לא הבנתי..כאילו סדרה של סדרות או סדרה?
| |
| | |
| ::סדרה רגילה של איברים ממשיים. --[[משתמש:מני ש.|מני]] 10:00, 28 במרץ 2013 (IST)
| |
| | |
| == תרגיל 4 שאלה 4 ==
| |
| | |
| יש לי תחושה שחסר הנתון <math>x\notin A</math>.
| |
| | |
| - נכון, רשמנו הערה מעל לתרגיל. תודה :) --[[משתמש:לואי פולב|לואי]] 19:59, 6 באפריל 2013 (IDT)
| |
| | |
| == תרגיל 5- שאלות 2, 3 ==
| |
| | |
| כשמוכיחים את התכונות הדרושות לטופולוגיה צריך להוכיח גם את הטענות מתורת הקבוצות שמשתמשים בהן בדרך?
| |
| | |
| תודה
| |
| | |
| ::השאלה איזו טענות מוכיחים בדרך. זה קצת כללי מדי. אם זה דה מורגן, חשבון עוצמות סטנדרטי או דברים ברמה הזו שראיתם נניח כבר בבדידה/תורת הקבוצות אפשר בלי הוכחה. אם יש טענה ספציפית שיש לגביה ספק אשמח לדעת. --[[משתמש:מני ש.|מני]] 13:07, 12 באפריל 2013 (IDT)
| |
| | |
| יכול להיות שיש טעות ב2 ב' 1?
| |
| חסר Z ב-t
| |
| ::היתה טעות. שימו לב להערה מחוץ לקובץ. --[[משתמש:מני ש.|מני]] 17:27, 12 באפריל 2013 (IDT)
| |
| | |
| == תרגיל 5 שאלה 2 סעיף א ==
| |
| | |
| הייתי מעוניין לדעת האם יש סיבה שבגללה הקבוצה <math>S</math> הוגדרה כפי שהיא הוגדרה בתרגיל?
| |
| | |
| בפתרון יצא לי שלא התייחסתי בכלל לאופן שבו הוגדרה <math>S</math>.
| |
| | |
| כלומר, אם בתרגיל היה נתון ש <math>S</math> היא ת"ק כלשהי של <math>\mathbb R</math> הפתרון שלי היה נשאר אותו דבר.
| |
| | |
| ::אתה צודק. יכול להיות שבעתיד נרצה להראות תכונה מסוימת (שלא הוזכרה עדיין בקורס) לגבי המרחב הזה (עם הסדרה) כפי שהוצג כאן ואז יהיה ברור למה המרחב הוגדר דווקא בצורה זו. --[[משתמש:מני ש.|מני]] 00:02, 15 באפריל 2013 (IDT)
| |
| | |
| == תרגיל 5 שאלה 2 סעיף ב ==
| |
| | |
| האם הכוונה ש <math>O_n \notin \tau</math> לכל <math> 1>n \in \mathbb{Z}</math>?
| |
| ::כתבנו כנראה לא מדוייק. הכוונה דווקא <math>O_n \in \tau</math> לכל <math> n \in \mathbb{Z}</math>. כלומר <math>\tau=\{\mathbb{Z},\emptyset\}\cup \{O_n: n\in \mathbb{Z}\} </math> --[[משתמש:מני ש.|מני]] 18:11, 15 באפריל 2013 (IDT)
| |
| | |
| == תרגיל 6 שאלה 6 סעיף 4 ==
| |
| | |
| ''הסיקו כי כל כדור פתוח <math>B(a,\epsilon)</math> הומיאומורפי ל- <math>B(0,1)</math>.''
| |
| | |
| האם הכדור השני, <math>B(0,1)</math> , נמצא ב- <math>X</math> או ב- <math>\mathbb {R}</math>?
| |
| | |
| == תרגיל 6 שאלה 4 סעיף ב ==
| |
| האם אפשר להשתמש באותה דוגמה על מנת להפריך את שני המקרים?
| |
| | |
| == הומאומורפיזם ==
| |
| | |
| הוכחנו בכיתה שכל הקטעים הפתוחים ב <math>{R}</math> הומאומורפים זה לזה. האם זה נכון גם לR^n? ז"א האם כל הקבוצות הפתוחות בR^n הומאומורפיות אחת לשניה?
| |
| | |
| תודה! | |