89-113 תשע"ג סמסטר ב' - הודעות: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
אין תקציר עריכה
שורה 1: שורה 1:
*5/7'''הערה בנושא לכסינות ושלישות
אלו הגרירות:
לכסינות <=> '''פ"א''' מל"ל+שיוויון ריבויים <=> '''פ"מ''' מל"ל שונים
(נירצה גם מל"ל לפ"א וגם שיוויון ריבויים ע"מ לקבל מספיק ע"ע לבניית D ומספיק ו"ע לבניית P. האחד איננו גורר את השני.
לדוגמא
(i) הפ"א <math>(x+1)^2(x+2)</math> הוא מל"ל, אך אם ר"ג של הע"ע 1 קטן מ-2 אין לכסינות, לא יהיו מספיק ו"ע כדי לבנות P מלכסנת.
(ii) הפ"א <math>(x^2+1)(x-3)^2</math> הוא איננו מל"ל. לכן, גם אם יש שיוויון ריבויים עבור הע"ע היחיד-3, לא תהיה לכסינות כי אין מספיק ע"ע (שהם שורשי הפ"א) לבניית האלכסונית D).
שימו לב, ריבוי כל חלק בפ"מ הוא בין 1 לריבויו בפ"א. לכן, בפרט מתקיים
'''פ"א''' מל"ל שונים => לכסינות, אך לא להיפך.
* 7/6- שאלה פתורה לסטודנטים בתרגול של יום חמישי (עידן)
* 7/6- שאלה פתורה לסטודנטים בתרגול של יום חמישי (עידן)



גרסה מ־20:36, 5 ביולי 2013

  • 5/7הערה בנושא לכסינות ושלישות

אלו הגרירות:

לכסינות <=> פ"א מל"ל+שיוויון ריבויים <=> פ"מ מל"ל שונים

(נירצה גם מל"ל לפ"א וגם שיוויון ריבויים ע"מ לקבל מספיק ע"ע לבניית D ומספיק ו"ע לבניית P. האחד איננו גורר את השני.

לדוגמא

(i) הפ"א [math]\displaystyle{ (x+1)^2(x+2) }[/math] הוא מל"ל, אך אם ר"ג של הע"ע 1 קטן מ-2 אין לכסינות, לא יהיו מספיק ו"ע כדי לבנות P מלכסנת.

(ii) הפ"א [math]\displaystyle{ (x^2+1)(x-3)^2 }[/math] הוא איננו מל"ל. לכן, גם אם יש שיוויון ריבויים עבור הע"ע היחיד-3, לא תהיה לכסינות כי אין מספיק ע"ע (שהם שורשי הפ"א) לבניית האלכסונית D).

שימו לב, ריבוי כל חלק בפ"מ הוא בין 1 לריבויו בפ"א. לכן, בפרט מתקיים

פ"א מל"ל שונים => לכסינות, אך לא להיפך.


  • 7/6- שאלה פתורה לסטודנטים בתרגול של יום חמישי (עידן)

שאלה על הניצב

  • 6/6-להלן הבהרה בנושא ש.ב- תרגילים שיעלו בשבועיים האחרונים של הסמסטר לא יהיו להגשה (כלומר, יעלו עם פתרונות). מתוך 11 התרגילים שכן להגשה ילקחו ה-9 הטובים ביותר. כלומר אם יש תרגיל שאינכם מרוצים מציונו, או שפיספסתם הגשה במהלך הסמסטר, המשיכו להגיש גם את 10 ו-11.
  • שימו לב לתיקון בתרגיל 10.


  • 23/5 - לקבוצות של עידן (יום רביעי) - מצ"ב קובץ המסכם שתי טענות מהתרגול על קבוצות אורתוגונליות

שתי שאלות

  • 22/5 - לקבוצה 05 של עידן (יום רביעי) - קראו את הקובץ המצורף לפתרון ברור של אחת השאלות מהתרגול של היום

שאלה על מכפלה פנימית


  • 29/4- תרגילים בדוקים שלא נילקחו בכיתה, נמצאים בתיקיה ע"ש הקורס בחדר צילום, בקומת הכניסה של מתמטיקה.
  • 28/4-הערות לתירגול 7:

1)שיוויון העיקבה למטריצות דומות: קל להראות שעבור מטריצה A עם פ"א [math]\displaystyle{ f_A(x)=\Sigma_{i=0}^na_ix^i }[/math] מתקיים [math]\displaystyle{ |a_{n-1}|=tr(A),\ |a_0|=det(A) }[/math]. כמו כן, הוכחנו כי למטריצות דומות פ"א זהה, כלומר הפולינומים שווים מקדם-מקדם, בפרט גם העיקבה זהה והדטרמיננטה זהה.

עיקבה שווה לסכום ע"ע עבור מט' עם פ"א מל"ל: אם הפ"א מל"ל, הוכחתם בכיתה כי המטריצה דומה למשולשית T.

בסה"כ לA ולT אותם ע"ע ואותה עיקבה, ב-T הע"ע מופיעים על האלכסון ונקבל את הנידרש.

2)מטריצות דומות => פ"א זהה ופ"מ זהה.

חשוב! הכיוון ההפוך נכון רק עבור מטריצות 2X2 ו-3X3.

3)הערות חשובות:

א. אם פולינום מאפס את A אז גם המתוקן המתאים לו (כלומר הפולינום המחולק במקדם המוביל) מאפס את A.

ב. חשוב! קיים פולינום מתוקן יחיד מדרגה מינימלית (לא מכל דרגה) אשר מאפס את A.

4) מציאת המינימלי:

אם [math]\displaystyle{ f_A(x)=p_1(x)^{d_1}\cdots p_k(x)^{d_k} }[/math] (עבור [math]\displaystyle{ p_i }[/math] הרכיבים האי פריקים(לא בהכרח לינארים) של f) אז [math]\displaystyle{ M_A(x)=p_1(x)^{s_1}\cdots p_k(x)^{s_k} }[/math] עבור [math]\displaystyle{ 1\leq s_i\leq d_i\ \forall i }[/math]

  • 24/4- לקבוצות של עידן: התשובה המפורטת לתרגיל האחרון

תרגול 7

  • 14/4- לקבוצה של עדי ניב: בשל לחץ הזמן ההוכחה האחרונה בשיעור יצאה מעט מבולגנת. אני מעלה אותה כאן לנוחיותכם

הגרעין וחד-חד ערכיות

  • 4/4- שימו לב להערות עבור תרגיל 3
  • 17/3-לקבוצה של עדי: לא יתקיים היום תירגול. שיעור השלמה יעודכן. נא להגיש את תרגיל 1 בתא שלי (בניין 216, קומה -1, תא 30).
  • שיעור השלמה לקבוצה של עדי יתקיים ביום ד, 3/4, בשעה 18:00-18:45, בבניין 403 חדר 67.
  • למגישים באיחור בתאים, נא לציין מחלקה.