חוג הפולינומים מעל שדה: הבדלים בין גרסאות בדף

מתוך Math-Wiki
 
שורה 3: שורה 3:
יהי <math>F</math> שדה. ביטוי פורמלי מהצורה <math>\sum_{i=0}^na_ix^i=a_0+a_1x+\ldots+a_nx^n</math>  כאשר <math>n\geq0</math> ו-<math>a_1,\ldots,a_n\in F</math> נקרא '''פולינום במשתנה <math>x</math> מעל <math>F</math>'''. האיברים <math>a_0,\ldots,a_n</math> נקראים '''מקדמי הפולינום'''.
יהי <math>F</math> שדה. ביטוי פורמלי מהצורה <math>\sum_{i=0}^na_ix^i=a_0+a_1x+\ldots+a_nx^n</math>  כאשר <math>n\geq0</math> ו-<math>a_1,\ldots,a_n\in F</math> נקרא '''פולינום במשתנה <math>x</math> מעל <math>F</math>'''. האיברים <math>a_0,\ldots,a_n</math> נקראים '''מקדמי הפולינום'''.


נניח כי <math>m\leq n</math> אנו נאמר כי שני פולינומים <math>\sum_{i=0}^na_ix^i,\,\sum_{j=1}^mb_jx^j</math> הם שקולים אם <math>a_i=b_i</math> עבור <math>0\leq i\leq m</math> ו-<math>a_i=0</math> עבור <math>m<i\leq n</math>. מעכשיו, כאשר נדבר על פולינום נתכוון בעם למחלקת השקילות של כל הפולינומים השקולים לו. עדיף לא לחשוב על זה.
נניח כי <math>m\leq n</math> אנו נאמר כי שני פולינומים <math>\sum_{i=0}^na_ix^i,\,\sum_{j=1}^mb_jx^j</math> הם שקולים אם <math>a_i=b_i</math> עבור <math>0\leq i\leq m</math> ו-<math>a_i=0</math> עבור <math>m<i\leq n</math>. מעכשיו, כאשר נדבר על פולינום נתכוון בעצם למחלקת השקילות של כל הפולינומים השקולים לו. עדיף לא לחשוב על זה.


כל פולינום <math>f(x)</math> שאינו פולינום ה-0 (פולינום שכל מקדמיו הם 0) שקול לפולינום יחיד <math>a_0+a_1x+\ldots+a_nx^n</math> עם <math>a_n\neq 0</math>. המספר <math>n</math> נקרא '''דרגת הפולינום''' ומסומן ב-<math>\deg f</math>. מעלת פולינום ה-0 מוגדרת לעיתים להיות <math>-\infty</math>.
כל פולינום <math>f(x)</math> שאינו פולינום ה-0 (פולינום שכל מקדמיו הם 0) שקול לפולינום יחיד <math>a_0+a_1x+\ldots+a_nx^n</math> עם <math>a_n\neq 0</math>. המספר <math>n</math> נקרא '''דרגת הפולינום''' ומסומן ב-<math>\deg f</math>. מעלת פולינום ה-0 מוגדרת לעיתים להיות <math>-\infty</math>.
שורה 12: שורה 12:
'''אוסף הפולינומים מעל <math>F</math> במשתנה <math>x</math>''' יסומן ב-<math>F[x]</math>.  
'''אוסף הפולינומים מעל <math>F</math> במשתנה <math>x</math>''' יסומן ב-<math>F[x]</math>.  
מגידירים על <math>F[x]</math> חיבור וכפל על ידי הנוסחאות:
מגידירים על <math>F[x]</math> חיבור וכפל על ידי הנוסחאות:
* <math>\sum_{i=0}^na_ix^i+\sum_{i=1}^nb_ix^n=\sum_{i=1}^n(a_i+b_i)x^n</math> (אם דרגת הפולינומים שמחברים לא שווה החליפו אותם בפולינומים שקולים עם אותה דרגה.)
* <math>\sum_{i=0}^na_ix^i+\sum_{i=0}^nb_ix^n=\sum_{i=0}^n(a_i+b_i)x^n</math> (אם דרגת הפולינומים שמחברים לא שווה החליפו אותם בפולינומים שקולים עם אותה דרגה.)
* <math>\sum_{i=0}^na_ix^i\cdot\sum_{j=0}^mb_jx^j=\sum_{k=0}^{m+n}\left(\sum_{0\leq i\leq n,0\leq j\leq m,m+n=k}a_ib_j\right)x^k</math>
* <math>\sum_{i=0}^na_ix^i\cdot\sum_{j=0}^mb_jx^j=\sum_{k=0}^{m+n}\left(\sum_{0\leq i\leq n,0\leq j\leq m,m+n=k}a_ib_j\right)x^k</math>
הפעולות האלה הופכות את <math>F[x]</math> לחוג.
הפעולות האלה הופכות את <math>F[x]</math> לחוג.


'''הערה:''' כל ההגדרות לעיל עובדות לכל חוג ולא רק לשדות.
'''הערה:''' כל ההגדרות לעיל עובדות לכל חוג ולא רק לשדות.


== תכונות ==
== תכונות ==

גרסה אחרונה מ־12:53, 20 ביולי 2013

הגדרה

יהי [math]\displaystyle{ F }[/math] שדה. ביטוי פורמלי מהצורה [math]\displaystyle{ \sum_{i=0}^na_ix^i=a_0+a_1x+\ldots+a_nx^n }[/math] כאשר [math]\displaystyle{ n\geq0 }[/math] ו-[math]\displaystyle{ a_1,\ldots,a_n\in F }[/math] נקרא פולינום במשתנה [math]\displaystyle{ x }[/math] מעל [math]\displaystyle{ F }[/math]. האיברים [math]\displaystyle{ a_0,\ldots,a_n }[/math] נקראים מקדמי הפולינום.

נניח כי [math]\displaystyle{ m\leq n }[/math] אנו נאמר כי שני פולינומים [math]\displaystyle{ \sum_{i=0}^na_ix^i,\,\sum_{j=1}^mb_jx^j }[/math] הם שקולים אם [math]\displaystyle{ a_i=b_i }[/math] עבור [math]\displaystyle{ 0\leq i\leq m }[/math] ו-[math]\displaystyle{ a_i=0 }[/math] עבור [math]\displaystyle{ m\lt i\leq n }[/math]. מעכשיו, כאשר נדבר על פולינום נתכוון בעצם למחלקת השקילות של כל הפולינומים השקולים לו. עדיף לא לחשוב על זה.

כל פולינום [math]\displaystyle{ f(x) }[/math] שאינו פולינום ה-0 (פולינום שכל מקדמיו הם 0) שקול לפולינום יחיד [math]\displaystyle{ a_0+a_1x+\ldots+a_nx^n }[/math] עם [math]\displaystyle{ a_n\neq 0 }[/math]. המספר [math]\displaystyle{ n }[/math] נקרא דרגת הפולינום ומסומן ב-[math]\displaystyle{ \deg f }[/math]. מעלת פולינום ה-0 מוגדרת לעיתים להיות [math]\displaystyle{ -\infty }[/math].

הערה: כל פולינום [math]\displaystyle{ f(x)=a_0+a_1x_1\ldots+a_nx^n }[/math] משרה פונקציה מ-[math]\displaystyle{ F }[/math] לעצמו ששולחת את [math]\displaystyle{ u\in F }[/math] ל-[math]\displaystyle{ f(u):=a_0+a_1u+\ldots+a_nu^n }[/math]. אם השדה [math]\displaystyle{ F }[/math] סופי, ייתכן כי שני פולינומים שונים ישרו אותה פונקציה.


אוסף הפולינומים מעל [math]\displaystyle{ F }[/math] במשתנה [math]\displaystyle{ x }[/math] יסומן ב-[math]\displaystyle{ F[x] }[/math]. מגידירים על [math]\displaystyle{ F[x] }[/math] חיבור וכפל על ידי הנוסחאות:

  • [math]\displaystyle{ \sum_{i=0}^na_ix^i+\sum_{i=0}^nb_ix^n=\sum_{i=0}^n(a_i+b_i)x^n }[/math] (אם דרגת הפולינומים שמחברים לא שווה החליפו אותם בפולינומים שקולים עם אותה דרגה.)
  • [math]\displaystyle{ \sum_{i=0}^na_ix^i\cdot\sum_{j=0}^mb_jx^j=\sum_{k=0}^{m+n}\left(\sum_{0\leq i\leq n,0\leq j\leq m,m+n=k}a_ib_j\right)x^k }[/math]

הפעולות האלה הופכות את [math]\displaystyle{ F[x] }[/math] לחוג.

הערה: כל ההגדרות לעיל עובדות לכל חוג ולא רק לשדות.

תכונות

אם [math]\displaystyle{ F }[/math] שדה, החוג [math]\displaystyle{ F[x] }[/math] הוא תחום אוקלידי. פונקציית הדרגה תהייה דרגת הפולינום. כתוצאה מכך:

  • לכל שני פולינומים קיים מחלק משותף מקסימלי וניתן למצוא אותן ע"י האלגוריתם של אוקלידס.
  • [math]\displaystyle{ F[x] }[/math] תחום ראשי, כלומר כל אידיאל נוצר ע"י איבר אחד. אם האידיאל אינו 0, האיבר הזה הוא בעל דרגה מינימלית באידיאל (אם מתעלמים מפולינום ה-0).
  • [math]\displaystyle{ F[x] }[/math] הוא תחום פריקות יחידה (לכל פולינום יש פירוק יחיד לגורמים)
  • פולינום שונה מ-0 הוא אי-פריק אם ורק אם הוא ראשוני.
  • כל אידיאל ראשוני שונה מ-0 של [math]\displaystyle{ F[x] }[/math] הוא מקסימלי. בפרט, אם [math]\displaystyle{ p(x)\neq 0 }[/math] הוא ראשוני (או אי פריק) אז [math]\displaystyle{ F[x]/p(x)F[x] }[/math] הוא שדה.