88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 7: הבדלים בין גרסאות בדף
אחיה בר-און (שיחה | תרומות) |
אחיה בר-און (שיחה | תרומות) |
||
שורה 23: | שורה 23: | ||
'''הוכחה.''' | '''הוכחה.''' | ||
יש התאמה חח"ע ועל <math>g:P(A)\to \{0,1\}^A</math> ע"י <math>g(B)=f_B=\chi_B</math> | יש התאמה חח"ע ועל <math>g:P(A)\to \{0,1\}^A</math> ע"י | ||
<math>\forall B\subseteq A : g(B)=f_B=\chi_B</math> | |||
לפי תרגיל קודם <math>|A|<|\{0,1\}^A|=|p(A)|</math> | לפי תרגיל קודם <math>|A|<|\{0,1\}^A|=|p(A)|</math> |
גרסה מ־13:33, 31 ביולי 2013
אריתמטיקה של עוצמות
הגדרה יהיו A,B קבוצות אזי [math]\displaystyle{ A^B:=\{f:B\rightarrow A\} }[/math].
תרגיל. יהיו A,B קבוצות כך ש [math]\displaystyle{ |B|\gt 1 }[/math]. הוכח כי [math]\displaystyle{ |A|\lt |B^A| }[/math].
פתרון. נבחר 2 איברים שונים [math]\displaystyle{ b_0,b_1\in B }[/math] ונגדיר פונקציה חח"ע [math]\displaystyle{ g:A\to B^A }[/math] ע"י [math]\displaystyle{ g(a)=f_a }[/math] כאשר [math]\displaystyle{ f_a(a)=b_1 }[/math] ו [math]\displaystyle{ \forall a'\not=a :f_a(a')=b_0 }[/math] ולכן [math]\displaystyle{ |A|\leq|B^A| }[/math].
נניח בשלילה שקיים שיוויון אזי קיימת התאמה חח"ע ועל [math]\displaystyle{ g:A\to B^A }[/math]. נסמן [math]\displaystyle{ \forall a\in A:g(a)=f_a }[/math].
נראה באופן דומה לתירגול קודם כי g איננה על ע"י שנמצא פונקציה f שאין לה מקור:
נבחר 2 איברים שונים [math]\displaystyle{ b_0,b_1\in B }[/math]ונגדיר פונקציה באופן הבא [math]\displaystyle{ f:A\rightarrow B }[/math] ע"י [math]\displaystyle{ f(a)=b_0 }[/math] אם [math]\displaystyle{ f_a(a)=b_1 }[/math]. ו- [math]\displaystyle{ f(a)=b_1 }[/math] אחרת. לפי הבנייה [math]\displaystyle{ \forall a\in A f\not=f_a }[/math] כיוון ש [math]\displaystyle{ f(a)\not=f_a(a) }[/math]. סתירה לכך ש g על.
תרגיל. הוכח שעוצמת קבוצת החזקה של A תמיד גדולה מעוצמתה של A
הוכחה. יש התאמה חח"ע ועל [math]\displaystyle{ g:P(A)\to \{0,1\}^A }[/math] ע"י [math]\displaystyle{ \forall B\subseteq A : g(B)=f_B=\chi_B }[/math]
לפי תרגיל קודם [math]\displaystyle{ |A|\lt |\{0,1\}^A|=|p(A)| }[/math]
הערה: (למי שלמד תורת הקבוצות) מסיבה זו אוסף העוצמות אינו קבוצה אלא מחלקה. שכן אם הוא היה קבוצה, הייתה לו עוצמה
הגדרה: יהיו שתי קבוצות זרות A,B כך ש [math]\displaystyle{ |A|=a, |B|=b }[/math]. אזי נגדיר פעולות בין עוצמות:
- [math]\displaystyle{ a+b:=|A\cup B| }[/math]
- [math]\displaystyle{ a\cdot b := |A\times B| }[/math]
- [math]\displaystyle{ a^b := |\{f:B\rightarrow A\}| }[/math]
דוגמא: ראינו בתירגול קודם את הזיהוי [math]\displaystyle{ [0,1)=\{f:\mathbb{N} \to \{0,1,...9\}\} }[/math] לכן [math]\displaystyle{ \aleph=|\mathbb{R}|=|[0,1)|=|\{f:\mathbb{N} \to \{0,1,...9\}\}|=10^{\aleph_0} }[/math]
הערות:
- ההגדרות לעיל מוגדרות היטב, כלומר העוצמה נשארת זהה ללא תלות בבחירת הקבוצות המייצגות.
- בידקו שעבור המקרה הסופי מתקיים מה שמצופה.
למשל [math]\displaystyle{ 2+1=|\{1,2\}\cup\{3\}|=3 }[/math]
- שימו לב: מתוך הגדרה זו קל לראות את חוקי החזקות למקרי הקצה:
- [math]\displaystyle{ a^0=1 }[/math] שכן יש פונקציה יחידה מהקבוצה הריקה לכל מקום - היחס שהוא הקבוצה הריקה.
- [math]\displaystyle{ 0^0=1 }[/math] זה מקרה פרטי של הסעיף הקודם, ועדיין מתקיים
- [math]\displaystyle{ a\neq 0 \rightarrow 0^a=0 }[/math] אין אף פונקציה מקבוצה לא ריקה אל קבוצה ריקה, שכן יחס כזה לא יכול להיות שלם.
תכונות האריתמטיקה
יהיו a,b,c עוצמות אזי מתקיים
- [math]\displaystyle{ ab=ba }[/math]
- [math]\displaystyle{ (ab)c=a(bc) }[/math]
- [math]\displaystyle{ a^ba^c=a^{b+c} }[/math]
- [math]\displaystyle{ a^cb^c=(ab)^c }[/math]
- [math]\displaystyle{ (a^b)^c=a^{bc} }[/math]
כלומר מתקיימים חוקי החזקות ה"רגילים"
בנוסף אם מניחים את אקסיומת הבחירה אזי מתקיים עבור a,b עוצמות כאשר אחד מהם אין סופי
- [math]\displaystyle{ a+b=max\{a,b\} }[/math]
- אם שניהם אינם אפס אזי [math]\displaystyle{ a\cdot b=max\{a,b\} }[/math]
- מסקנה: אם [math]\displaystyle{ 2\leq a \leq b }[/math] אזי [math]\displaystyle{ a^b=2^b }[/math]
הוכחה [math]\displaystyle{ 2^b\leq a^b\leq (2^a)^b=2^{ab}=2^b }[/math]
תרגיל הוכח כי [math]\displaystyle{ |\mathbb{R}\times \mathbb{R}|=|\mathbb{R}| }[/math]
פתרון: ראינו [math]\displaystyle{ |\mathbb{R}|=10^{\aleph_0}=2^{\aleph_0}= }[/math]
לכן [math]\displaystyle{ |\mathbb{R}\times \mathbb{R}|=2^{\aleph_0}2^{\aleph_0}=2^{\aleph_0+\aleph_0}=2^{\aleph_0}=|\mathbb{R}| }[/math]
תרגיל ממבחן תשסח מועד א (ד"ר שי סרוסי וד"ר אלי בגנו)
תהי A קבוצה אינסופית. נסמן [math]\displaystyle{ a=|A|,\;B=P(A),\;F=A\times P(A),\; C=P(A)^A,\; H=B^B }[/math]
- א. מצא את [math]\displaystyle{ |C| }[/math]
- ב. מצא את [math]\displaystyle{ |F\times H| }[/math]
- ג. מצא את [math]\displaystyle{ |\{R:|\mathbb{N}/R|=2\}| }[/math] המוכלת באוסף יחסי השקילות על הטבעיים.
פתרון.
א. [math]\displaystyle{ |C|=(2^a)^a=2^{aa}=2^a }[/math]
ב.[math]\displaystyle{ |F\times H|=|F||H|=a2^a(2^a)^{2^a}=2^{a2^a}=2^{2^a} }[/math]
ג. כל יחס שקילות שקבוצת המנה 2 מתאים לחלוקה של [math]\displaystyle{ |\mathbb{N}| }[/math] ל-2 קבוצות זרות לכן [math]\displaystyle{ \{R:|\mathbb{N}/R|=2\} }[/math] מתאים לחצי מקבוצות ב [math]\displaystyle{ P(\mathbb{N}) }[/math] ( [math]\displaystyle{ P(A)=B\cup B' }[/math] כאשר [math]\displaystyle{ |B|=|B'| }[/math] ולכן [math]\displaystyle{ |P(A)|=|B| }[/math] )
לכן[math]\displaystyle{ |\{R:|\mathbb{N}/R|=2\}|=|\{P(\mathbb{N}\}|=2^{\aleph_0} }[/math]
תרגיל ממבחן תשע מועד א (ד"ר שי סרוסי וד"ר אפי כהן)
יהי S יחס על [math]\displaystyle{ \mathbb{R}^\mathbb{R} }[/math] (קבוצת כל הפונקציות הממשיות), המוגדר על ידי [math]\displaystyle{ (f,g)\in S }[/math] אם"ם לכל [math]\displaystyle{ x\in\mathbb{R} }[/math] מתקיים [math]\displaystyle{ f(x)-g(x)\in\mathbb{Z} }[/math]
- 1. הוכיחו ש S הינו יחס שקילות
- 2. תהי [math]\displaystyle{ f\in\mathbb{R}^\mathbb{R} }[/math] מצאו את [math]\displaystyle{ |[f]| }[/math]
- 3. מצאו את [math]\displaystyle{ |\mathbb{R}^\mathbb{R}/S| }[/math]
פתרון:
1.
- רפלקסיביות: [math]\displaystyle{ \forall x\in\mathbb{R} f(x)-f(x)=0\in\mathbb{Z} }[/math]
- סימטריות: [math]\displaystyle{ f(x)-g(x)\in\mathbb{Z} }[/math] גורר שגם [math]\displaystyle{ g(x)-f(x)\in\mathbb{Z} }[/math] כי יש נגדי לחיבור
- טרנזיטיביות: נובעת בקלות מסגירות לחיבור בשלמים: [math]\displaystyle{ f-h=f-g+g-h }[/math]
2.
עבור [math]\displaystyle{ [f]\in \mathbb{R}^\mathbb{R}/S }[/math] נגדיר [math]\displaystyle{ F:[f] \to \mathbb{Z}^{\mathbb{R}} }[/math]. ע"י [math]\displaystyle{ F(g):=f-g }[/math] נראה כי היא מוגדרת,חח"ע ועל.
מוגדרת: לפי ההגדרה של יחס השקילות אכן מתקיים [math]\displaystyle{ f-g\in \mathbb{Z}^{\mathbb{R}} }[/math]
חח"ע: נניח [math]\displaystyle{ F(g)=F(h) }[/math] לכן [math]\displaystyle{ \forall x\in\mathbb{R} f(x)-g(x)=f(x)-h(x) }[/math] ולכן h=g.
על: תהי h פונקציה כלשהי מהממשיים לשלמים, ברור ש(f-h) במחלקת השקילות של f והיא תהיה המקור.
אם כך, העוצמה של מחלקת השקילות זהה לעוצמה של אוסף הפונקציות מהממשיים לשלמים והוא [math]\displaystyle{ {\aleph_0}^\aleph }[/math]. לפי התכונות שלמדנו לעיל מתקיים [math]\displaystyle{ 2^\aleph\leq{\aleph_0}^\aleph\leq 2^\aleph }[/math] ולכן לפי קנטור מתקיים [math]\displaystyle{ {\aleph_0}^\aleph=2^\aleph }[/math]
3.
נזכור בסימון [math]\displaystyle{ \lfloor x\rfloor }[/math] שהוא המספר השלם הגדול ביותר הקטן או שווה לx.
נגדיר F פונקציה השולחת את [math]\displaystyle{ f\in\mathbb{R}^\mathbb{R} }[/math] לפונקציה [math]\displaystyle{ F(f):=f-\lfloor f\rfloor\in [0,1)^\mathbb{R} }[/math]. נראה ש-F מוגדרת היטב (על קבוצת המנה)וההפעלה שלה על קבוצת המנה תהיה חח"ע ועל.
מוגדרות: יהיו שתי פונקציות באותה מחלקת שקילות g,f. אזי, [math]\displaystyle{ F(g)-F(f)=g-\lfloor g\rfloor -f + \lfloor f\rfloor }[/math]. מכיוון שזהו הפרש של שני מספרים אי שליליים קטנים מאחד, זה שווה למספר אי שלילי קטן מאחד. מכיוון שההפרש בין f ל-g שלם, המספר הזה הוא שלם. המספר השלם האי שלילי היחיד שקטן מאחד הינו אפס כלומר [math]\displaystyle{ F(f)=F(g) }[/math]. לכן הפונקציה F מוגדרת היטב שכן היא שולחת נציגים שונים של מחלקת שקילות לאותו מקום.
חח"ע: נניח [math]\displaystyle{ F(f)=F(g) }[/math] אז [math]\displaystyle{ f-g=\lfloor f\rfloor - \lfloor g\rfloor }[/math] כיוון ש [math]\displaystyle{ \lfloor f\rfloor - \lfloor g\rfloor\in \mathbb{Z}^\mathbb{R} }[/math] אזי הם נציגים של אותה מחלקת שקילות כלומר [math]\displaystyle{ [f]=[g] }[/math]
על: ניקח פונקציה כלשהי r מהממשיים לקטע [math]\displaystyle{ [0,1) }[/math]. קל לראות ש [math]\displaystyle{ F[r]=r }[/math] שכן [math]\displaystyle{ \lfloor r \rfloor = 0 }[/math]. לכן r ישמש מקור ולכן F הינה על.
סה"כ קיבלנו שעוצמת קבוצת המנה שווה ל[math]\displaystyle{ \aleph^\aleph }[/math] וזה שווה ל[math]\displaystyle{ 2^\aleph }[/math] לפי התכונות לעיל.
תרגיל ממבחן תשע מועד ב (ד"ר שי סרוסי וד"ר אפי כהן)
א. תהי A קבוצה אינסופית מעוצמה a.
- 1. נגדיר עבור :
[math]\displaystyle{ X=\{(X_1,...,X_n):1\lt n\in\mathbb{N}\and\Big[\bigcup_i X_i=A\Big] \and \Big[\forall i\neq j: X_i\cap X_j = \emptyset\Big]\} }[/math].
כלומר אוסף החלקות הסופיות הלא טרי' הסדורות של A הוכח [math]\displaystyle{ |X|=2^a }[/math]
- 2. מצא את [math]\displaystyle{ |\mathbb{N}\times X|,|\mathbb{N}\cup X| }[/math] וגם את [math]\displaystyle{ |X|^{|\mathbb{N}|},|\mathbb{N}|^{|X|} }[/math]
ב.תהי [math]\displaystyle{ \{A_i\}_{i\in I} }[/math] משפחה של קבוצות הזרות זו לזו. נסמן את עוצמת כל אחת מהן ב[math]\displaystyle{ a_i }[/math] בהתאמה. נגדיר [math]\displaystyle{ \sum_{i\in I} a_i = |\bigcup_{i\in I}A_i| }[/math].
חשב את [math]\displaystyle{ \sum_{n\in\mathbb{N}}\aleph }[/math]
פתרון.
א.
- 1.
נביט באוסף הפונקציות [math]\displaystyle{ Y=\{f:A\rightarrow\mathbb{N}\} }[/math]. נגדיר [math]\displaystyle{ g:X\to Y }[/math] על ידי לכל [math]\displaystyle{ x=(X_1,...,X_n)\in X }[/math]
נשלח אותו ל [math]\displaystyle{ g(x)=f_x }[/math] המוגדר [math]\displaystyle{ \forall a\in A :\; f_x(a)=k }[/math] כאשר [math]\displaystyle{ a\in X_k }[/math] כלומר שולחת איבר לאינדקס של הקבוצה שהוא נמצא בה בחלוקה.
נוכיח שהפונקציה מוגדרת, חח"ע ועל.
מוגדרת: כיוון ש x הוא חלוקה של A אזי האיבר a יופיע ויופיע בדיוק באחת מהקבוצות.
חח"ע: נניח [math]\displaystyle{ (X_1,...,X_n)=x\neq x'=(X'_1,...,X'_m) }[/math]. אזי קיים [math]\displaystyle{ X_i\not=X'_i }[/math], לכן קיים יהיה [math]\displaystyle{ a\in X_i/X'_i }[/math] (או להיפך) ואז [math]\displaystyle{ i=f_x(a)\not= f_{x'}(a) }[/math] כלומר [math]\displaystyle{ g(x)\not=g(x') }[/math]
כעת, קל למצוא פונקציה חח"ע מקבוצת החזקה של A ל-X - נשלח כל תת קבוצה לזוג שמכיל אותה ואת המשלים שלה.
לכן [math]\displaystyle{ 2^{|A|} \leq |X| \leq |Y| = \aleph_0^{|A|} }[/math], ולפי התכונות לעיל שני הקצוות שווים. לכן עוצמת X הינה [math]\displaystyle{ 2^a }[/math].
- 2.
[math]\displaystyle{ |\mathbb{N}\cup Y|=\aleph_0+2^a=2^a }[/math]
[math]\displaystyle{ |\mathbb{N}\times Y|=\aleph_0\cdot 2^a=2^a }[/math]
[math]\displaystyle{ |Y|^{|\mathbb{N}|}=(2^a)^{\aleph_0}=2^{a\cdot \aleph_0}=2^a }[/math]
[math]\displaystyle{ |\mathbb{N}|^{|Y|}=(\aleph_0)^{2^a}=2^{2^a} }[/math]
ב.
בעצם אנו רוצים לחשב איחוד בן מנייה של קבוצות מעוצמת [math]\displaystyle{ \aleph }[/math]. לכל עותק של [math]\displaystyle{ \aleph }[/math] נתאים [math]\displaystyle{ A_n }[/math] ופונקציה חח"ע ועל [math]\displaystyle{ f_n:\mathbb{R}\rightarrow A_n }[/math]. כעת נגדיר פונקציה [math]\displaystyle{ g:\mathbb{N}\times\mathbb{R}\rightarrow\bigcup_{n\in\mathbb{N}}A_n }[/math] ע"י [math]\displaystyle{ g(k,x)=f_k(x) }[/math]. מכיוון שהקבוצות זרות ו[math]\displaystyle{ f_k }[/math] חח"ע ברור שg חח"ע. מכיוון ש[math]\displaystyle{ f_k }[/math] על גם g על ולכן סה"כ עוצמת הסכום הינה [math]\displaystyle{ \aleph_0\cdot\aleph=\aleph }[/math]