שיחה:88-211 תשעד סמסטר א/תרגילים: הבדלים בין גרסאות בדף
Beatle fan 1 (שיחה | תרומות) (←שאלה תרגיל 3 סעיף א בשאלה 3: פסקה חדשה) |
|||
שורה 51: | שורה 51: | ||
*תשובה: כן, מחשבים את כל האפשרויות האלה... ובקשר לסימני הדולר: ניסית לפתוח את האתר בדפדפן שונה? --[[משתמש:לואי פולב|לואי]] ([[שיחת משתמש:לואי פולב|שיחה]]) 06:49, 12 בנובמבר 2013 (EST) | *תשובה: כן, מחשבים את כל האפשרויות האלה... ובקשר לסימני הדולר: ניסית לפתוח את האתר בדפדפן שונה? --[[משתמש:לואי פולב|לואי]] ([[שיחת משתמש:לואי פולב|שיחה]]) 06:49, 12 בנובמבר 2013 (EST) | ||
== שאלה תרגיל 3 סעיף א בשאלה 3 == | |||
איך להסביר שהדוגמה לאיזומורפיזם זה אכן איזומורפיזם?זה לא טריוויאלי מכיוון שלכל איבר מתאים איבר אחר וכדומה? |
גרסה מ־13:03, 15 בנובמבר 2013
תרגיל 1, שאלה 6
לגבי השאלה האחרונה, אני לא יודעת איך להוכיח את האיזומורפיות.
כלומר אני לא יודעת איזו פונקציה להגדיר כך שתתאים. גם איך לעשות אם אני לא יודעת מה זה (M,.)
הכוונה למונואיד הראשון שמופיע לא לשני.
אפשר לקבל כיוון? תודה
חשבתי אולי F(b)=ab
- תשובה: [math]\displaystyle{ (M, \cdot) }[/math] הוא מונואיד כלשהו, אנחנו גם לא צריכים לדעת מהו. באמצעות מונואיד זה, אנחנו מגדירים מונואיד חדש, [math]\displaystyle{ (M, * ) }[/math]. האיברים שלו הם אותם האיברים, אבל הפעולה שונה. על מנת להוכיח שהם איזומורפיים, יש להגדיר פונקציה [math]\displaystyle{ F: (M,*) \rightarrow (M, \cdot ) }[/math]. הפונקציה הזאת צריכה להיות, קודם כל, הומומורפיזם (של מונואידים). כלומר היא צריכה לקיים [math]\displaystyle{ F(x*y)=F(x)\cdot F(y) }[/math] (שימו לב שהפעולה בשני האגפים היא שונה, בהתאם למונואיד שבו הפעולה מתבצעת).
בנוסף, היא צריכה להעביר את איבר היחידה של המונואיד הראשון לאיבר היחידה של המונואיד השני. אז גם אם לא מצליחים מיד לנחש את הפונקציה, זהו מקום טוב להתחיל. היזכרו שבתרגול כבר הראינו מיהו איבר היחידה של [math]\displaystyle{ (M,*) }[/math], אז תנסו לנחש פונקציה שתשלח אותו לאיבר היחידה של [math]\displaystyle{ (M,\cdot) }[/math]. --לואי 19:06, 21 באוקטובר 2013 (IDT)
תרגיל 1 שאלה 5
בתרגיל מוגדר כפל ב-S כאשר S היא הקבוצה עליה מוגדרת הפעולה. אני משער שהכוונה היא לכפל ב-s (קטנה), אם לא אז אשמח לדעת כיצד מוגדר כפל של איבר בקבוצה בקבוצה עצמה.
אם זו אכן טעות מקלדת אז יש לי שאלה אחרת... אם נתבונן בקבוצה {0,1} ונגדיר שכפל כל שני איברים בה יתן 0 נקבל חבורה למחצה שמקיימת את תנאי השאלה אבל אינה מונואיד- היכן הטעות שלי?
תודה
- תשובה: זהו אכן כפל של איבר בכל הקבוצה, והוא מוגדר באופן הבא: [math]\displaystyle{ aS=\{ ax: x\in S \} }[/math].--לואי 16:30, 22 באוקטובר 2013 (IDT)
שאלה כללית - תרגיל 3 שאלה 3
אז רציתי לדעת באופן כללי,איך את מחשבת את איברי החבורה שנוצרים ע"י איברים מסוימים.למשל,בשאלה 3 של ש.ב האחרונים,אני לא כ"כ הבנתי את מצאת את האיברים בחבורה(שני הסעיפים בכלל).איך עושים כדי כדי למצוא איברי חבורה בחהורות סימטריה?
- תשובה: אז קודם כל את שואלת גם על סעיף א', ואני לא בטוחה שאני מבינה את השאלה.... לגבי סעיף ב': החישוב שנעשה שם הוא חישוב ישיר של כל המכפלות. כלומר, אנחנו יודעים שהאיברים בחבורה הנוצרת על-ידי [math]\displaystyle{ a,b }[/math] הם מהצורה [math]\displaystyle{ a^ib^ja^k... }[/math] וכד'. אז קודם כל חישבנו את החזקות של כל אחד מהיוצרים (הראשון מסדר 2 והשני מסדר 3) ואז התחלנו להכפיל אותם (עם החזקות ובלי) משני הצדדים עד אשר ראינו שמיצינו את כל האפשרויות וניתן לעצור. כרגע, זו הדרך היחידה שלנו למצוא את האיברים בחבורות כאלה. --לואי (שיחה) 12:07, 11 בנובמבר 2013 (EST)
תרגיל 3, שאלה 2, סעיף ב'
מדוע מתקיים α^t=β^t =id? למה השיוון של החזקות מתקיים?
- תשובה: נניח שזה לא מתקיים. זה אומר ש- [math]\displaystyle{ \alpha^t }[/math] הוא ההופכי של [math]\displaystyle{ \beta^t }[/math]. אבל שימו לב שזה לא אפשרי, כי אם [math]\displaystyle{ \alpha, \beta }[/math] זרים, אז גם כאשר מעלים אותם בחזקה הם נשארים זרים. ומחזורים זרים אינם יכולים להיות הופכי אחד של השני, שכן ההופכי של מחזור [math]\displaystyle{ (i_1 i_2 i_3 ... i_n) }[/math] הוא [math]\displaystyle{ (i_n i_{n-1} ... i_2 i_1) }[/math].--לואי (שיחה) 12:03, 11 בנובמבר 2013 (EST)
המשך לשאלה שלי תרגיל 3 שאלה 3
סימני הדולר האלה עושים לי שחור בעיניים...בעצם את אומרת שמתקיים: α=(145)(263) וגם עבור β=(15)(36) אזי:
α^3=id β^2=id
שזה נכון,אני מסכימה. אבל גם מחשבים בנוסף
β,α,α^2,αβ,α^2*β,?
- תשובה: כן, מחשבים את כל האפשרויות האלה... ובקשר לסימני הדולר: ניסית לפתוח את האתר בדפדפן שונה? --לואי (שיחה) 06:49, 12 בנובמבר 2013 (EST)
שאלה תרגיל 3 סעיף א בשאלה 3
איך להסביר שהדוגמה לאיזומורפיזם זה אכן איזומורפיזם?זה לא טריוויאלי מכיוון שלכל איבר מתאים איבר אחר וכדומה?