88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 1.5: הבדלים בין גרסאות בדף
אחיה בר-און (שיחה | תרומות) (←הכללות) |
אחיה בר-און (שיחה | תרומות) |
||
שורה 10: | שורה 10: | ||
למה זה מספיק? | למה זה מספיק? | ||
בוא נחשוב.. הוכחנו באופן ישיר כי הטענה נכונה עבור <math>n=1</math> כלומר <math>P(1)</math> מתקיים. לכן לפי הטענה השניה, אם הטענה נכונה עבור <math>n=1</math> (שזה אכן כך) אז הטענה נכונה גם עבור <math>n=2</math>כלומר <math>P(2)</math>. אה! אז עכשיו זה נכון עבור <math>n=2</math> אז לפי אותה טענה זה נכון גם עבור <math>n=3</math>! ומה עכשיו? אם זה נכון עבור <math>n=3</math> זה נכון עבור <math>n=4</math> . וכן על זה הדרך. אפשר להשתכנע שבסופו של דבר <math>P(n)</math> נכון '''לכל''' <math>n</math> | בוא נחשוב.. הוכחנו באופן ישיר כי הטענה נכונה עבור <math>n=1</math> כלומר <math>P(1)</math> מתקיים. לכן לפי הטענה השניה, אם הטענה נכונה עבור <math>n=1</math> (שזה אכן כך) אז הטענה נכונה גם עבור <math>n=2</math>כלומר <math>P(2)</math>. אה! אז עכשיו זה נכון עבור <math>n=2</math> אז לפי אותה טענה זה נכון גם עבור <math>n=3</math>! ומה עכשיו? אם זה נכון עבור <math>n=3</math> זה נכון עבור <math>n=4</math> . וכן על זה הדרך. אפשר להשתכנע שבסופו של דבר <math>P(n)</math> נכון '''לכל''' <math>n</math> | ||
דוגמא: | |||
נוכיח באינדוקציה כי הטענה <math>(1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3</math> | |||
נכונה לכל <math>n\in \mathbb{N} </math> טבעי | |||
הוכחה: | |||
עבור <math>n=1</math> אכן מתקיים כי <math>1^2=1^3</math> | |||
כעת נניח כי הטענה עבור <math>n</math> כלשהוא, כלומר מתקיים <math>(1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3</math> ונוכיח כי הטענה נכונה עבור <math>n+1</math>, כלומר | |||
<math>(1+2+\cdots +n+n+1)^2 =1^3 +2^3 + \cdots +n^3 + (n+1)^3</math> | |||
דוגמא נוספת: | |||
==עיקרון הסדר הטוב == | |||
==הכללות== | ==הכללות== | ||
===הכללה | ===הכללה פשוטה1=== | ||
הכללה ישירה מתבצעת כך (החלפה רק של הטענה הראשונה): אם נוכיח עבור טענה <math>P(n)</math> ש: | הכללה ישירה מתבצעת כך (החלפה רק של הטענה הראשונה): אם נוכיח עבור טענה <math>P(n)</math> ש: | ||
* הטענה מתקיימת עבור <math>n=k</math> מסוים כלומר <math>P(k)</math> מתקיים | * הטענה מתקיימת עבור <math>n=k</math> מסוים כלומר <math>P(k)</math> מתקיים | ||
שורה 18: | שורה 33: | ||
אז באופן דומה הטענה נכונה <math>P(n)</math> נכונה עבור <math>n\geq k</math> | אז באופן דומה הטענה נכונה <math>P(n)</math> נכונה עבור <math>n\geq k</math> | ||
כלומר - במקום להוכיח עבור <math>n=1</math> ואז הטענה מתקיים החל מ-1 ניתן להוכיח עבור <math>n=k</math> ואז הטענה מתקיים החל מ-k | |||
===הכללה פשוטה 2 === | |||
אם נוכיח עבור טענה <math>P(n)</math> ש: | |||
* הטענה מתקיימת עבור <math>n=1</math> מסוים כלומר <math>P(1)</math> מתקיים | |||
* '''אם''' הטענה נכונה עבור כל המספרים עד מספר טבעי מסוים <math>n</math> (כלומר מתקיים <math>P(m)</math> עבור <math>m\leq n</math>) אזי היא נכונה גם עבור המספר הבא אחריו (כלומר <math>P(n+1)</math> מתקיים). | |||
אז באופן דומה הטענה נכונה <math>P(n)</math> נכונה עבור <math>n\geq k</math> | |||
כלומר - אפשר להחליף את ההנחה שמתקיים עבור <math>n</math> ולהוכיח עבור <math>n+1</math> | |||
בהנחה שמתקיים עבור כל מי ש'''קטן שווה''' <math>n</math> ולהוכיח עבור <math>n+1</math> | |||
=== הכללה מעמיקה === | === הכללה מעמיקה === | ||
תהא <math>A</math> קבוצה סדורה היטב | תהא <math>A</math> קבוצה סדורה היטב בת מניה אז אפשר לעשות שם אינדוקציה | ||
הערה: אפשר לעשות אינדוקציה טרנספניטית על קבוצות כלשהן (לאו דווקא בנות מניה) | |||
הערה: קיום סדר טוב על הטבעיים שקול לקיומה של אינדוקציה על הטבעיים. | |||
== תרגילים יותר מעניינים == | |||
כפל n מטריצות | |||
הפרש סימטרי של n קבוצות |
גרסה מ־09:01, 17 ביולי 2014
רעיון בסיסי - אינדוקציה על הטבעיים
בשביל להוכיח שטענה מסוימת [math]\displaystyle{ P(n) }[/math] נכונה עבור כל מספר טבעי (למשל [math]\displaystyle{ (1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3 }[/math]) מספיק להוכיח את הבאים:
- הטענה מתקיימת עבור [math]\displaystyle{ n=1 }[/math] כלומר [math]\displaystyle{ P(1) }[/math] מתקיים
- אם הטענה נכונה עבור מספר טבעי מסוים אזי היא נכונה גם עבור המספר הבא אחריו. כלומר [math]\displaystyle{ P(n)\Rightarrow P(n+1) }[/math].
למה זה מספיק? בוא נחשוב.. הוכחנו באופן ישיר כי הטענה נכונה עבור [math]\displaystyle{ n=1 }[/math] כלומר [math]\displaystyle{ P(1) }[/math] מתקיים. לכן לפי הטענה השניה, אם הטענה נכונה עבור [math]\displaystyle{ n=1 }[/math] (שזה אכן כך) אז הטענה נכונה גם עבור [math]\displaystyle{ n=2 }[/math]כלומר [math]\displaystyle{ P(2) }[/math]. אה! אז עכשיו זה נכון עבור [math]\displaystyle{ n=2 }[/math] אז לפי אותה טענה זה נכון גם עבור [math]\displaystyle{ n=3 }[/math]! ומה עכשיו? אם זה נכון עבור [math]\displaystyle{ n=3 }[/math] זה נכון עבור [math]\displaystyle{ n=4 }[/math] . וכן על זה הדרך. אפשר להשתכנע שבסופו של דבר [math]\displaystyle{ P(n) }[/math] נכון לכל [math]\displaystyle{ n }[/math]
דוגמא: נוכיח באינדוקציה כי הטענה [math]\displaystyle{ (1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3 }[/math] נכונה לכל [math]\displaystyle{ n\in \mathbb{N} }[/math] טבעי
הוכחה:
עבור [math]\displaystyle{ n=1 }[/math] אכן מתקיים כי [math]\displaystyle{ 1^2=1^3 }[/math]
כעת נניח כי הטענה עבור [math]\displaystyle{ n }[/math] כלשהוא, כלומר מתקיים [math]\displaystyle{ (1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3 }[/math] ונוכיח כי הטענה נכונה עבור [math]\displaystyle{ n+1 }[/math], כלומר [math]\displaystyle{ (1+2+\cdots +n+n+1)^2 =1^3 +2^3 + \cdots +n^3 + (n+1)^3 }[/math]
דוגמא נוספת:
עיקרון הסדר הטוב
הכללות
הכללה פשוטה1
הכללה ישירה מתבצעת כך (החלפה רק של הטענה הראשונה): אם נוכיח עבור טענה [math]\displaystyle{ P(n) }[/math] ש:
- הטענה מתקיימת עבור [math]\displaystyle{ n=k }[/math] מסוים כלומר [math]\displaystyle{ P(k) }[/math] מתקיים
- אם הטענה נכונה עבור מספר טבעי מסוים אזי היא נכונה גם עבור המספר הבא אחריו. כלומר [math]\displaystyle{ P(n)\Rightarrow P(n+1) }[/math].
אז באופן דומה הטענה נכונה [math]\displaystyle{ P(n) }[/math] נכונה עבור [math]\displaystyle{ n\geq k }[/math]
כלומר - במקום להוכיח עבור [math]\displaystyle{ n=1 }[/math] ואז הטענה מתקיים החל מ-1 ניתן להוכיח עבור [math]\displaystyle{ n=k }[/math] ואז הטענה מתקיים החל מ-k
הכללה פשוטה 2
אם נוכיח עבור טענה [math]\displaystyle{ P(n) }[/math] ש:
- הטענה מתקיימת עבור [math]\displaystyle{ n=1 }[/math] מסוים כלומר [math]\displaystyle{ P(1) }[/math] מתקיים
- אם הטענה נכונה עבור כל המספרים עד מספר טבעי מסוים [math]\displaystyle{ n }[/math] (כלומר מתקיים [math]\displaystyle{ P(m) }[/math] עבור [math]\displaystyle{ m\leq n }[/math]) אזי היא נכונה גם עבור המספר הבא אחריו (כלומר [math]\displaystyle{ P(n+1) }[/math] מתקיים).
אז באופן דומה הטענה נכונה [math]\displaystyle{ P(n) }[/math] נכונה עבור [math]\displaystyle{ n\geq k }[/math]
כלומר - אפשר להחליף את ההנחה שמתקיים עבור [math]\displaystyle{ n }[/math] ולהוכיח עבור [math]\displaystyle{ n+1 }[/math] בהנחה שמתקיים עבור כל מי שקטן שווה [math]\displaystyle{ n }[/math] ולהוכיח עבור [math]\displaystyle{ n+1 }[/math]
הכללה מעמיקה
תהא [math]\displaystyle{ A }[/math] קבוצה סדורה היטב בת מניה אז אפשר לעשות שם אינדוקציה
הערה: אפשר לעשות אינדוקציה טרנספניטית על קבוצות כלשהן (לאו דווקא בנות מניה) הערה: קיום סדר טוב על הטבעיים שקול לקיומה של אינדוקציה על הטבעיים.
תרגילים יותר מעניינים
כפל n מטריצות הפרש סימטרי של n קבוצות