88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 1.5: הבדלים בין גרסאות בדף
אחיה בר-און (שיחה | תרומות) |
אחיה בר-און (שיחה | תרומות) |
||
שורה 62: | שורה 62: | ||
<math>R</math> יקרא סדר טוב אם לכל <math>\emptyset \neq B\subseteq A</math> קיים איבר מינימום/הכי קטן/ראשון ב <math>B</math>. | <math>R</math> יקרא סדר טוב אם לכל <math>\emptyset \neq B\subseteq A</math> קיים איבר מינימום/הכי קטן/ראשון ב <math>B</math>. | ||
מינוח: נאמר כי <math>A</math> סדורה היטב. | |||
דוגמא (אינטואיטיבית): | דוגמא (אינטואיטיבית): | ||
שורה 80: | שורה 82: | ||
הערה: זה בניגוד לסדר "קטן שווה" הרגיל על השברים שאינו סדר טוב כי לקבוצה | הערה: זה בניגוד לסדר "קטן שווה" הרגיל על השברים שאינו סדר טוב כי לקבוצה | ||
<math>\{x\in \mathbb{Q}_+ | x<\sqrt{2}\}</math> אין איבר מינימום. | <math>\{x\in \mathbb{Q}_+ | x<\sqrt{2}\}</math> אין איבר מינימום. | ||
===עיקרון הסדר הטוב=== | |||
עיקרון הסדר הטוב הוא פשוט הטענה שלכל קבוצה <math>A</math> קיים סדר טוב | |||
==הכללות== | ==הכללות== |
גרסה מ־12:29, 17 ביולי 2014
רעיון בסיסי - אינדוקציה על הטבעיים
בשביל להוכיח שטענה מסוימת [math]\displaystyle{ P(n) }[/math] נכונה עבור כל מספר טבעי (למשל [math]\displaystyle{ (1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3 }[/math]) מספיק להוכיח את הבאים:
- (בסיס האינדוקציה) הטענה מתקיימת עבור [math]\displaystyle{ n=1 }[/math] כלומר [math]\displaystyle{ P(1) }[/math] מתקיים
- (צעד האינדוקציה)אם הטענה נכונה עבור מספר טבעי מסוים אזי היא נכונה גם עבור המספר הבא אחריו. כלומר [math]\displaystyle{ P(n)\Rightarrow P(n+1) }[/math].
למה זה מספיק? בוא נחשוב.. הוכחנו באופן ישיר כי הטענה נכונה עבור [math]\displaystyle{ n=1 }[/math] כלומר [math]\displaystyle{ P(1) }[/math] מתקיים. לכן לפי הטענה השניה, אם הטענה נכונה עבור [math]\displaystyle{ n=1 }[/math] (שזה אכן כך) אז הטענה נכונה גם עבור [math]\displaystyle{ n=2 }[/math]כלומר [math]\displaystyle{ P(2) }[/math]. אה! אז עכשיו זה נכון עבור [math]\displaystyle{ n=2 }[/math] אז לפי אותה טענה זה נכון גם עבור [math]\displaystyle{ n=3 }[/math]! ומה עכשיו? אם זה נכון עבור [math]\displaystyle{ n=3 }[/math] זה נכון עבור [math]\displaystyle{ n=4 }[/math] . וכן על זה הדרך. אפשר להשתכנע שבסופו של דבר [math]\displaystyle{ P(n) }[/math] נכון לכל [math]\displaystyle{ n }[/math]
דוגמא: נוכיח באינדוקציה כי הטענה [math]\displaystyle{ (1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3 }[/math] נכונה לכל [math]\displaystyle{ n\in \mathbb{N} }[/math] טבעי
הוכחה:
עבור [math]\displaystyle{ n=1 }[/math] אכן מתקיים כי [math]\displaystyle{ 1^2=1^3 }[/math]
כעת נניח כי הטענה עבור [math]\displaystyle{ n }[/math] כלשהוא, כלומר מתקיים [math]\displaystyle{ (1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3 }[/math] ונוכיח כי הטענה נכונה עבור [math]\displaystyle{ n+1 }[/math], כלומר [math]\displaystyle{ (1+2+\cdots +n+(n+1))^2 =1^3 +2^3 + \cdots +n^3 + (n+1)^3 }[/math]
נוכיח
[math]\displaystyle{ (1+2+\cdots +n+(n+)1)^2=(1+2+\cdots +n)^2+2\cdot(1+2+\cdots +n)(n+1)+(n+1)^2 }[/math]
לפי הנחת האינדוקציה אפשר להמשיך הלאה
[math]\displaystyle{ =1^3 +2^3 + \cdots +n^3 +2\cdot (1+2+\cdots +n)(n+1)+(n+1)^2 }[/math] [math]\displaystyle{ =1^3 +2^3 + \cdots +n^3 +2 \cdot \frac{n(n+1)}{2}(n+1)+(n+1)^2 }[/math] [math]\displaystyle{ =1^3 +2^3 + \cdots +n^3 +n(n+1)^2+(n+1)^2 }[/math] [math]\displaystyle{ =1^3 +2^3 + \cdots +n^3 +(1+n)(n+1)^2=1^3 +2^3 + \cdots +n^3+(n+1)^3 }[/math]
וסיימנו
דוגמא נוספת:
הוכח כי לכל מספר טבעי [math]\displaystyle{ n }[/math] מתקיים כי [math]\displaystyle{ 2+4+6+\cdots +2n=n(n+1) }[/math]
פתרון:
עבור [math]\displaystyle{ n=1 }[/math] אכן מתקיים [math]\displaystyle{ 2=1\cdot(1+1) }[/math]
כעת נניח שהטענה נכונה עבור [math]\displaystyle{ n }[/math] ונוכיח את הטענה עבור [math]\displaystyle{ n+1 }[/math]
[math]\displaystyle{ 2+4+\cdots 2n+2(n+1)=\sum_{k=1}^{n+1}2\cdot k=\sum_{k=1}^{n}2\cdot k + 2(n+1) = }[/math]
לפי הנחת האינדוקציה ניתן להמשיך
[math]\displaystyle{ =n(n+1)+2(n+1)=(n+1)(n+2) }[/math]
שזה הטענה עבור [math]\displaystyle{ n+1 }[/math] וסיימנו.
עיקרון הסדר הטוב
הגדרה:
תהא [math]\displaystyle{ A }[/math] קבוצה עם יחס סדר חלקי [math]\displaystyle{ R }[/math] על [math]\displaystyle{ A }[/math].
[math]\displaystyle{ R }[/math] יקרא סדר טוב אם לכל [math]\displaystyle{ \emptyset \neq B\subseteq A }[/math] קיים איבר מינימום/הכי קטן/ראשון ב [math]\displaystyle{ B }[/math].
מינוח: נאמר כי [math]\displaystyle{ A }[/math] סדורה היטב.
דוגמא (אינטואיטיבית):
נסתכל על [math]\displaystyle{ \mathbb{N} }[/math] קבוצת הטבעיים עם יחס הסדר "קטן שווה" הסטנדרטי.
אזי אכן מתקיים כי לכל קבוצה לא ריקה של טבעיים קיים איבר מינימום בקבוצה.
דוגמא נוספת:
ניתן להגדיר אל [math]\displaystyle{ \mathbb{Q}_+ }[/math] יחס סדר חלקי לפי התמונה הבא (כאשר מזהים כל שבר עם זוג סדור ומבטלים את החזרות המיותרות)
התבוננו והשתכנעו שזה גם סדר טוב.
הערה: זה בניגוד לסדר "קטן שווה" הרגיל על השברים שאינו סדר טוב כי לקבוצה [math]\displaystyle{ \{x\in \mathbb{Q}_+ | x\lt \sqrt{2}\} }[/math] אין איבר מינימום.
עיקרון הסדר הטוב
עיקרון הסדר הטוב הוא פשוט הטענה שלכל קבוצה [math]\displaystyle{ A }[/math] קיים סדר טוב
הכללות
הכללה פשוטה 1
הכללה ישירה מתבצעת כך (החלפה רק של הטענה הראשונה): אם נוכיח עבור טענה [math]\displaystyle{ P(n) }[/math] ש:
- הטענה מתקיימת עבור [math]\displaystyle{ n=k }[/math] מסוים כלומר [math]\displaystyle{ P(k) }[/math] מתקיים
- אם הטענה נכונה עבור מספר טבעי מסוים אזי היא נכונה גם עבור המספר הבא אחריו. כלומר [math]\displaystyle{ P(n)\Rightarrow P(n+1) }[/math].
אז באופן דומה הטענה נכונה [math]\displaystyle{ P(n) }[/math] נכונה עבור [math]\displaystyle{ n\geq k }[/math]
כלומר - במקום להוכיח עבור [math]\displaystyle{ n=1 }[/math] ואז הטענה מתקיים החל מ-1 ניתן להוכיח עבור [math]\displaystyle{ n=k }[/math] ואז הטענה מתקיים החל מ-k
דוגמא:
הוכח כי לכל [math]\displaystyle{ x\gt 0 }[/math] מתקיים [math]\displaystyle{ (1+x)^n \gt 1+nx }[/math] לכל [math]\displaystyle{ n\geq 2 }[/math]
פתרון:
עבור [math]\displaystyle{ n=2 }[/math] נקבל [math]\displaystyle{ (1+x)^2 = 1+2x+x^2\gt 1+2x }[/math] כי [math]\displaystyle{ x\gt 0 }[/math]
כעת נניח כי הטענה נכונה עבור [math]\displaystyle{ n }[/math] כלשהוא, כלומר מתקיים [math]\displaystyle{ (1+x)^n \gt 1+nx }[/math]
נוכיח עבור [math]\displaystyle{ n+1 }[/math] מהנחת האינדוקציה נקבל כי [math]\displaystyle{ (1+x)^{n+1}=(1+x)^n\cdot (1+x)\gt (1+nx) +1+x \gt 1+x+nx =1+ (n+1)x }[/math]
וסיימנו
הכללה פשוטה 2
אם נוכיח עבור טענה [math]\displaystyle{ P(n) }[/math] ש:
- הטענה מתקיימת עבור [math]\displaystyle{ n=1 }[/math] מסוים כלומר [math]\displaystyle{ P(1) }[/math] מתקיים
- אם הטענה נכונה עבור כל המספרים עד מספר טבעי מסוים [math]\displaystyle{ n }[/math] (כלומר מתקיים [math]\displaystyle{ P(m) }[/math] עבור [math]\displaystyle{ m\leq n }[/math]) אזי היא נכונה גם עבור המספר הבא אחריו (כלומר [math]\displaystyle{ P(n+1) }[/math] מתקיים).
אז באופן דומה הטענה נכונה [math]\displaystyle{ P(n) }[/math] נכונה עבור [math]\displaystyle{ n\geq k }[/math]
כלומר - אפשר להחליף את ההנחה שמתקיים עבור [math]\displaystyle{ n }[/math] ולהוכיח עבור [math]\displaystyle{ n+1 }[/math] בהנחה שמתקיים עבור כל מי שקטן שווה [math]\displaystyle{ n }[/math] ולהוכיח עבור [math]\displaystyle{ n+1 }[/math]
דוגמא:
כל מספר טבעי [math]\displaystyle{ 1\lt n }[/math] ניתן להציגו כמכפלה של מספרים ראשוניים
הוכחה:
עבור [math]\displaystyle{ n=2 }[/math] זה נכון כי 2 ראשוני ואז הוא הפירוק של עצמו.
כעת נניח שהטענה נכונה לכל [math]\displaystyle{ 1\lt k\leq n }[/math] ונוכיח עבור [math]\displaystyle{ n+1 }[/math]
אם [math]\displaystyle{ n+1 }[/math] ראשוני - סיימנו כי אז הוא הפירוק של עצמו.
אחרת [math]\displaystyle{ n+1 }[/math] מתפרק למכפלה [math]\displaystyle{ n+1=ab }[/math] כאשר [math]\displaystyle{ 1\lt a,b\lt n+1 }[/math] לפי הנחת האינדוקציה [math]\displaystyle{ a,b }[/math] מתפרקים למכפלה של מספרים ראשוניים [math]\displaystyle{ a=\Pi_{k=1}^l p_k,b=\Pi_{i=1}^r q_i }[/math] כאשר [math]\displaystyle{ p_k,q)i }[/math] ראשוניים
ואז [math]\displaystyle{ n=ab=\Pi_{k=1}^l p_k\cdot \Pi_{i=1}^r q_i }[/math]
וסיימנו
הכללה מעמיקה
תהא [math]\displaystyle{ A }[/math] קבוצה סדורה היטב בת מניה אז אפשר לעשות שם אינדוקציה
הערה: אפשר לעשות אינדוקציה טרנספניטית על קבוצות כלשהן (לאו דווקא בנות מניה) הערה: קיום סדר טוב על הטבעיים שקול לקיומה של אינדוקציה על הטבעיים.
תרגילים יותר מעניינים
כפל n מטריצות הפרש סימטרי של n קבוצות