לינארית 1 לתיכוניסטים תש"ע - שאלות ותשובות: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
שורה 8: שורה 8:


=שאלות=
=שאלות=
=שאלה כללית=
אם הבוחן יהיה ברבע ל12 ואז הבוחן שעה ועוד רבע שעה תוספת זמן אז ייגמר ב1...
יש שיעור רגיל או שמשתחררים??


==שאלה 5.3ב'==   
==שאלה 5.3ב'==   

גרסה מ־21:15, 5 באוגוסט 2010

[math]\displaystyle{ \dim W+U= \dim W + \dim U - \dim W\cap U }[/math]

הוראות

כאן המקום לשאול שאלות. כל שעליכם לעשות הוא ללחוץ על [עריכה] (משמאל לכותרת "שאלות"), להוסיף בתחילת הדף את השורה הבאה:

== כותרת לשאלה ==

לכתוב מתחתיה את שאלתכם, וללחוץ על שמירה למטה מימין

הודעה חשובה !!! - יש להגיש את התרגילים הנוספים (13 , ו 14 כרשות למי שמגיש ) עד ,וכולל , 16.9.2010 ! למשל לתא הבודקת הילה הלוי בכר , או לתומר ביום רביעי או לניר ביום חמישי - בתרגולי החזרה . אנא הודיעו למי שאתם יודעים שלא יגיע לתרגולים אלו . תודה:)

ארכיון

ארכיון 1 - תרגיל 1

שאלות

שאלה כללית

אם הבוחן יהיה ברבע ל12 ואז הבוחן שעה ועוד רבע שעה תוספת זמן אז ייגמר ב1...

יש שיעור רגיל או שמשתחררים??

שאלה 5.3ב'

לדעת יש טעות בשאלה, תקנו אותי אם אני טועה. הטענה שצריך להוכיח היא שכל מטריצה סקלרית היא מטריצה אלכסונית, אבל לא כל מטריצה אלכסונית היא מטריצה סקלרית למשל עבור [math]\displaystyle{ \boldsymbol{\alpha}=0 }[/math](אני רק לא בטוח שאם [math]\displaystyle{ \boldsymbol{\alpha} }[/math] הוא סקלר אז הוא יכול ליהיות שווה 0, על זה מתבססת הטענה שלי פה). אם כן אז המטריצה [math]\displaystyle{ A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} }[/math] היא סקלרית אבל לא אלכסונית

תשובה

  • סקלר הוא איבר כלשהו מהשדה. אפס איבר בשדה ולכן הינו סקלר
  • מה לא אלכסוני במטריצה הזו? האם יש לה איברים שאינם אפסים ואינם על האלכסון?

אה, נכון טעות שלי, תודה!

שאלה

האם מותר לי להגיד שאם [math]\displaystyle{ -A=A }[/math] אז [math]\displaystyle{ 2A=0 }[/math] ואז [math]\displaystyle{ A=0 }[/math] ?

כן...

תשובה

מעל הממשיים מותר לאמר את זה. מעל [math]\displaystyle{ \mathbb{Z}_2 }[/math] אסור למשל.

למשל ב-שאלה 4.6א' מותר להגיד את זה? והאם אני חייב להוכיח?
הבנתי שאתה מתכוון לשאלה הזו מן הסתם :) כן צריך להוכיח למה זה נכון.
האם אני יכול להגיד פשוט שהאיבר [math]\displaystyle{ a_{ij}=-a_{ij} }[/math] ואז [math]\displaystyle{ a_{ij}=0 }[/math] כלומר כל איבר במטריצה שווה ל-0 ואז [math]\displaystyle{ A=0 }[/math]
כן אבל אתה גם צריך להסביר את זה - למה התכונה הזו נכונה בשדה הממשיים.
כי אם מכפלת שני מספרים ממשיים שווה 0 אז אחד מהם שווה 0(כי אין מחלקי 0 בשדה) ואז בגלל ש-[math]\displaystyle{ 2\neq 0 }[/math] אז [math]\displaystyle{ a_{ij}=0 }[/math]? האם זה הסבר מספק או שצריך להראות את זה בסיגמה?
אולי אפשר פשוט לכתוב ש-A=-A גורר 2A=0, ובגלל שבשדה הממשיים אין מחלקי אפס אז 2=0 או A=0, אבל 2 שונה מ-0 ולכן A=0?

שאלה על מט' מחלקת אפס

למה אם מטריצה מחלקת אפס אז היא לא הפיכה? (לפי הרמז בשאלה 6.19). תודה!

תשובה

נוכיח באופן כללי מדוע איברים מחלקים אפס אינם הפיכים: יהיו [math]\displaystyle{ a,b\neq 0 }[/math] שני איברים שונים מאפס, כך ש

[math]\displaystyle{ ab=0 }[/math].

נניח בשלילה שa הפיך. לכן נכפול בהופכי של a ונקבל

[math]\displaystyle{ a^{-1}ab=a^{-1}\cdot 0 }[/math]

ולכן [math]\displaystyle{ b=0 }[/math] בסתירה להנחה.

תודה.

תרגיל 3.2 (התר' הראשון)

פתרתי את התרגיל בעזרת מערכת של 12 משוואות עם 12 נעלמים. יש דרך יותר קלה לפתור את זה? (אם כן, חבל שלא שאלתי את זה קודם..)

תשובה

למה שאני אגיד לך עכשיו שתחשוב על מטריצות אלמנטריות או כפל עמודה עמודה? זה לא סתם יבאס אותך?

כדאי שתגיד לי כדי שאני אדע לעתיד..
צודק :) אז אמרתי.
מה זה כפל עמודה עמודה? תודה.
צורה לכפול שתי מטריצות. בגדול אלו שתי הנוסחאות [math]\displaystyle{ C_i(AB)=AC_i(B) }[/math] (העמודה הi של AB שווה למטריצה A כפול העמודה הi של B). הנוסחא השנייה היא [math]\displaystyle{ Ax=\sum_i x_iC_i(A) }[/math] כאשר x וקטור עמודה עם קואורדינטות x_i (הכפל של מטריצה בעמודה הוא הסכום של עמודות המטריצה כפול הקבועים מאותה העמודה).
ואיך זה עוזר לפתור בקלות? (גם אני פתרתי עם 12 משוואות ב-12 נעלמים...)

שאלה

לגבי שאלה 5.3לא הבנתי איך אני אמורה לפתור אותו לפי סעיף ההאחרון ומעלה או שכל סעיף בנפרד ? 5.16 איך בכלל נראת המטריצה ? מטריצת יחידה או מטריצה שהיא כמו מטריצה יחידה ויש שורת אפסים? איך אני צריכה לגשת לזה?

תשובה

5.3 כל סעיף בנפרד

5.16 אני אנסה להבהיר על ידי דוגמא. נניח n=5 אזי:


[math]\displaystyle{ A_1 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} }[/math], [math]\displaystyle{ A_2 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} }[/math], [math]\displaystyle{ A_3= \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} }[/math], [math]\displaystyle{ A_4= \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} }[/math],

[math]\displaystyle{ A_5=0 }[/math]

וכדומה.