לינארית 1 לתיכוניסטים תש"ע - שאלות ותשובות: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 12: שורה 12:


=שאלות=
=שאלות=
== שאלה כללית על אינדוקציה==
תמיד באינדוקציה אנחנו מוכיחים שהטענה נכונה לכל n טבעי או אם הגבלות מסויימות(גדול שווה וכו').
השאלה שלי היא האם מותר להוכיח עבור n טבעי מסויים, כלומר שקיים n שעבורו הביטוי מתקיים. אם השאלה לא מובנת אז אני אחדד אותה-כשאנחנו מוכיחים טענה, אנחנו מוכיחים עבור n=1 ואז מניחים שהטענה נכונה עבור n=k ומכאן מוכיחים שהטענה נכונה עבור n=k+1 השאלה אם כשאני מניח ש-n=k אני אני יכול להניח שלא כל k פותר אלא k מסויים(ספציפי) כלומר קיים k כזה, ומכאן להוכיח שגם קיים n=k+1 שפותר. תודה מראש!אגב, השאלה היא על 6.40 כי אני לא רואה דרך אחרת\כיוון להוכיח אותה(סעיף ב') אם משהו יוכל לתת לי כיוון אחר אני אשמח
==שאלה מהדף==
==שאלה מהדף==
מה הכוונה בלפתור את מערכת המשוואות של סעיף א'?(1b)כלומר, מאיזה צורה צריך להיות הפתרון?
מה הכוונה בלפתור את מערכת המשוואות של סעיף א'?(1b)כלומר, מאיזה צורה צריך להיות הפתרון?

גרסה מ־14:35, 12 באוגוסט 2010

[math]\displaystyle{ \dim W+U= \dim W + \dim U - \dim W\cap U }[/math]

הוראות

כאן המקום לשאול שאלות. כל שעליכם לעשות הוא ללחוץ על [עריכה] (משמאל לכותרת "שאלות"), להוסיף בתחילת הדף את השורה הבאה:

== כותרת לשאלה ==

לכתוב מתחתיה את שאלתכם, וללחוץ על שמירה למטה מימין

הודעה חשובה !!! - יש להגיש את התרגילים הנוספים (13 , ו 14 כרשות למי שמגיש ) עד ,וכולל , 16.9.2010 ! למשל לתא הבודקת הילה הלוי בכר , או לתומר ביום רביעי או לניר ביום חמישי - בתרגולי החזרה . אנא הודיעו למי שאתם יודעים שלא יגיע לתרגולים אלו . תודה:)

ארכיון

ארכיון 1 - תרגיל 1

ארכיון 2 - תרגיל 2

ארכיון 3 - בוחן + תרגיל 3

שאלות

שאלה כללית על אינדוקציה

תמיד באינדוקציה אנחנו מוכיחים שהטענה נכונה לכל n טבעי או אם הגבלות מסויימות(גדול שווה וכו'). השאלה שלי היא האם מותר להוכיח עבור n טבעי מסויים, כלומר שקיים n שעבורו הביטוי מתקיים. אם השאלה לא מובנת אז אני אחדד אותה-כשאנחנו מוכיחים טענה, אנחנו מוכיחים עבור n=1 ואז מניחים שהטענה נכונה עבור n=k ומכאן מוכיחים שהטענה נכונה עבור n=k+1 השאלה אם כשאני מניח ש-n=k אני אני יכול להניח שלא כל k פותר אלא k מסויים(ספציפי) כלומר קיים k כזה, ומכאן להוכיח שגם קיים n=k+1 שפותר. תודה מראש!אגב, השאלה היא על 6.40 כי אני לא רואה דרך אחרת\כיוון להוכיח אותה(סעיף ב') אם משהו יוכל לתת לי כיוון אחר אני אשמח

שאלה מהדף

מה הכוונה בלפתור את מערכת המשוואות של סעיף א'?(1b)כלומר, מאיזה צורה צריך להיות הפתרון?

תשובה

כמו שפתרתם משוואות עד היום. פתרון כללי עם פרמטרים חופשיים s,t וכו'. למשל [math]\displaystyle{ \{(s,t+s,4,s,t)|s,t \in \mathbb{R}\} }[/math] (כמובן שזה לא הפתרון פה...)

שאלה 4.3

בחוברת של התרגילים כתוב שההגדרה של [math]\displaystyle{ V+W }[/math] היא "התת מרחב הקטן ביותר שמכיל את [math]\displaystyle{ V }[/math] ואת [math]\displaystyle{ W }[/math]", ובהרצאה ההגדרה שאפי נתן הייתה ""תת מרחב המכיל את [math]\displaystyle{ W }[/math] ואת [math]\displaystyle{ V }[/math]". אני מניח שברור מה ההבדל, הרי אם ההגדרה של אפי נכונה הרבה יותר קל לתת דוגמה נגדית. אם ההגדרה של החוברת נכונה, אז אני לא מצליח למצוא שום דוגמה שבה [math]\displaystyle{ U+V=U\cup(V) }[/math] ואז אני לא מצליח להפריך את סעיף א'. או שיש דרך אחרת לעשות הכל ואני בכלל לא בכיוון? עזרה בבקשה...

תשובה

אני לא מתרגל אבל ע"פ מה שאני הבנתי- [math]\displaystyle{ U+V }[/math] הכוונה לכל הוקטורים שניתנים להצגה כסכום של 2 וקטורים אחרים כאשר אחד מ-[math]\displaystyle{ U }[/math]ואחד מ-[math]\displaystyle{ V }[/math].

כלומר [math]\displaystyle{ U+V= \{ u+v | u \in{U} \and v \in{V} \} }[/math] --Edi.gotlieb 15:41, 12 באוגוסט 2010 (IDT)

נכון מאד זו הגדרה נכונה. היא שקולה להגדרה תת המרחב הקטן ביותר שמכיל את שניהם (הוכיחו את זה, זה תרגיל קל). סתם מרחב שמכיל את שניהם אינה ההגדרה לW+U, אני גם מאמין שאפי לא הגדיר את זה כך. --ארז שיינר 15:06, 12 באוגוסט 2010 (IDT)

רמז לפתרון

בשאלות כאלה, לפעמים, נוח לחשוב על הגאומטריה. למשל, במרחב התלת מימדי יש שני סוגי תתי מרחבים: מישורים (מימד 2) וקוים ישרים (מימד 3). קל מאד לחשב חיתוכים וסכומים של מרחבים כאלה: חיתוך של קוים ישרים זרים הוא הראשית - כלומר אפס, חיבור של קוים ישרים זרים הוא המישור שהם יושבים בו, וכדומה.

שאלה 4.3

בסעיף ב' האם מספיק להראות אי הכלה חד-כיוונית כדי להוכיח אי-שיוויון תמיד? בקיצור מה צריך לעשות כדי להוכיח אי-שיוויון בין קבוצות?

תשובה

על מנת להראות שקבוצות לא שוות יש להראות שקיים איבר בקבוצה אחד שלא שייך לקבוצה השנייה.

יצאת מ-X מוכל באגף שמאל והגעתי לכך ש- X לא תמיד מוכל באגף ימין- כלומר יש מיקרים בהם זה כן ויש בהם שלא, זה מספיק?
מה מבקשים בעצם? להוכיח שהקבוצות לא תמיד שוות או שהם תמיד לא שוות?
הרישום אומר שהם תמיד שונות. יש להוכיח או להפריך את זה (דוגמא אחת שם הם שוות מהווה הפרכה)

שאלה 2.9

רוצים שנוכיח כי קבוצות מסוימות של מטריצות הם תת-מרחבים וקטורים של המרחב המטריצות הריבועיות. עכשיו לא ניתן להוכיח כי כל קבוצה של מטריצות מוכלת בקבוצה אחרת אלא אם נתון הסדר שלהן. נתון כי המרחב הוא מסדר [math]\displaystyle{ n \times{n} }[/math] אך לא נתון מה הסדר של קבוצת המטריצות האנטי סימטריות או האלה שהtrace שלהם מתאפס. האם אני צריך להניח שמדובר על הקבוצה מסדר [math]\displaystyle{ n \times{n} }[/math]  ? תודה

תשובה

כן הכוונה למטריצות מסדר nxn, כלומר לקבוצות המוכלות במרחב הנתון.

6.30 ב'

רציתי לשאול האם מותר לי כחלק מפעולת הדרוג לכפול בcos או בsin כסקלר, כלומר בפעולה האלמנטרית שאני מכפיל..?

תשובה

רק בנקודות בהן הם לא מתאפסים. אחר כך צריך לבדוק מה קורה בנקודות שהם מתאפסים בנפרד. כמו בדירוג עם פרמטר.

שאלה 1 מקובץ התרגילים

בשאלה 1 ד',כתוב מקיים את מערכת המשוואות שמכילה את המשוואות מסעיף א וגם ב. המשוואות מא' וב' הם אותו משוואות, האם הכוונה לסעיף א וסעיף ג?
תודה

תשובה

כן, סעיפים א' וג'

6.30

שלום, רציתי לשאול אם יש עוד דרכים למצוא מטריצה הפיכה חוץ מלדרג את המטריצה ולהפעיל את אותן פעולות אלמנריות על מטריצת היחידה?

תשובה

במטריצות 2 על 2 למדתם על שיטה מקוצרת. מעבר לכך אני לא יכול לחשוב על שיטה פרקטית יותר (מאשר לפתור מערכת עם מליון משוואות ומליון נעלמים :) )

במילים אחרות, אין "נוסחא" פשוטה להפוך מטריצה 3 על 3 (אתה מוזמן לנסות לחשב את הנוסחא הזו בעצמך), ואין דבר פשוט מלדרג מטריצה.

תרגיל 6.23

מותר לי להשתמש בנוסחה של סדרה הנדסית לשם ההוכחה,או שזה בעצם מה שאני אמור להוכיח?

תשובה

זה מה שצריך להוכיח.. הרי זו בדיוק הנוסחא.

עוד שאלה על 6.34

הצלחתי להבין שאם אכפול את המטריצה של המקדמים של מערכת המשוואות במטריצה ההופכית של A, אקבל את מט' הזהות. הבעיה היא 2 העמודות של האיקסים שנותרו- האם אני יכול "לפצל" את המטריצה ל3 העמודות הראשונוות ול2 הנותרות, לכפול רק את המטריצה הראשונה (שפיצלתי) במטריצה ההופכית של A, ואז להחזיר את המטריצות המפוצלות חזרה למטריצה אחת? אם כן, למה מותר לעשות את זה, ואיך עושים את זה? (איך קוראים לפעולה הזאת ומה הנימוק שאפשר לתת לה?) בנוסף, איך המטריצה של התשובות (123) מתנהגת? כלומר, כשאני מפצל את המטריצות, אני צריך לשים את המטריצה של התשובות מימין לכל אחת מהמטריצות שפיצלתי? אני לא מבין איך כל זה מתנהג. תודה!


תשובה

אסור לפרק את המטריצה ולכפול רק חלק ממנה ואז להרכיב חזרה. אני רק לא מבין לא לא פשוט לכפול.

והרי משפט: תהי P מטריצה הפיכה, ותהי Ax=b מערכת משוואות. אזי מרחב הפתרונות של מערכת המשוואות Ax=b זהה למרחב הפתרונות של המערכת PAx=Pb.

הרי אתם משתמשים במשפט הזה כל פעם שאתם מבצעים דירוג (כי דירוג הוא כפל במטריצה אלמנטרית).

הוכחה: אם x פתרון של Ax=b ברור שהוא פתרון של PAx=Pb (כי כפלנו שני צדיים שווים באותו דבר). בצורה דומה, ניתן לכפול את המערכת השנייה בהופכית של P לקבל [math]\displaystyle{ P^{-1}PAx=P^{-1}Pb }[/math] כלומר Ax=b ולכן כל פתרון של השנייה הוא גם פתרון של הראשונה, כי כפלו שני צדדים שווים באותה מטריצה ([math]\displaystyle{ P^{-1} }[/math]).

בקשה מארז שיינר- המתרגל של שיעור התגבור בלינארית (אם אפשר...)

ארז, בפעם הקודמת שיעור התגבור בלינארית הלך ללא הכנה, בלי שהכנת תרגילים שיהיה אפשר לעשות בו ובעצם בלי מה לעשות. אפשר לבקש שלשיעור התגבור הבא תכין כמה תרגילים מאתגרים שיכולים להופיע בבוחן/מבחן, במיוחד שאלות שמצריכות שימוש במכפלה במטריצות בסיסיות (כמו בשאלה שהייתה בשיעורי הבית), הוכחות עם מטריצות, וכו'? אני חושב שיהיה עדיף לעשות תרגילים נוספים, מאשר רק לחזור על הגדרות שאותן פשוט אפשר לקרוא מההרצאות. אם אפשר, ארצה לבקש אותו דבר גם מאדם בתגבור של בדידה. תודה רבה!

תשובה

שיעור התגבור איננו שיעור חזרה לקראת בוחן/מבחן. מטרת השיעור היא לעזור לתלמידים שמתקשים להדביק את קצב הקורס. תרגילים מאתגרים - מהגדרתם - אינם מתאימים לשיעור תגבור.

תרגילים על מטריצות בסיסיות יש מספיק בשיעור ובשיעורי הבית. אם הפתרונות לא מובנים (זה בהנחה שהם נקראו) ניתן לעבור עליהם שוב ולהסביר.

השיטה של פתרון תרגילים מסוגים שונים על מנת ללמוד לבוחן/מבחן עובדת בבגרות אך לא באוניברסיטה. בקורס אקדמי חייבים להבין את ההגדרות ואת המשפטים ואת הרעיונות המרכזיים בחומר. מטרת התגבור היא לעזור בביצוע משימה זו.

ארז.

תרגיל 2.9

בשאלה מראים ש [math]\displaystyle{ V=F^{nxn} }[/math]. מה זה? הרי V זה מ"ו, לא מרחב של מטריצות... ומטריצות זה אוסף של וקטורים, לא וקטור- יש בהם מחלקי אפס אז הם בכלל לא יכולות להיות מ"ו.. בקיצור פשוט תסבירו מה הכוונה של מה שכתבתי קודם..

תשובה

  • מרחב המטריצות הוא אכן מרחב וקטורי עם פעולות חיבור מטריצות וכפל בסקלר הידועות.
  • מחלקי אפס אין בשדה. במ"ו אין כפל בין וקטורים ולכן אין משמעות למחלקי אפס.
  • מטריצות זה לא אוסף של וקטורים. מטריצה זו טבלה של מספרים, והיא וקטור בעצמה (כאשר מסתכלים על המטריצות כמרחב וקטורי)

שאלה על משפט

המשפט: V מ"ו מעל שדה F תהי K שמוכלת בV. אם K מוכלת בU שהוא תת מרחב של V אז SPK מוכל בU.

ההוכחה שהמרצה כתב: ניקח u ששיך לSPK ונאמר שu שווה לסיגמה של אלפא (במקום הi) כפול v (במקום הi.)כאשר v שייך לK. כיוון שv שייך לK ןK מוכל בU הרי v שייך לU, אבל U תת מרחב של V ןלכן סגור לצרופים לינאריים. לכן u ששווה לסיגמה של אלפא (במקום הi) כפול v (במקום הi),שייך לU.

אני לא ממש הבנתי את ההוכחה, אם U סגור לצרופים לינאריים איך זה הגיוני שu שייך U?

תשובה

מה הכוונה איך זה הגיוני? זה מה שסגירות אומרת.

סגירות בU אומרת שלכל וקטורים[math]\displaystyle{ u_1,...,u_n \in U }[/math] ולכל סקלרים[math]\displaystyle{ a_1,...,a_n }[/math] מתקיים [math]\displaystyle{ a_1u_1+...+a_nu_n \in U }[/math]. (זה נובע מתכונות הסגירות לכפל בסקלר וחיבור של מרחב וקטורי - והרי U הוא מ"ו).

שאלה 6.37

בסע' ג' אסור לי להניח שאם A הפיכה אז היא בעצם מקיימת את מה שנדרש מ-P, נכון?

מה זאת אומרת מה שנדרש מP? כלומר [math]\displaystyle{ B=A^{-1}AA }[/math]? אין סיבה להניח דבר כזה... כי הרי זה שווה A