89-214 סמסטר א' תשעא: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 13: שורה 13:


במהלך הקורס נלמד מהם:  
במהלך הקורס נלמד מהם:  
מחלק (ב-<math>\ \mathbb{Z}</math>), חברות (ב-<math>\ \mathbb{Z}</math>), מחלק משותף מקסימלי, מנה ושארית (בחוג אוקלידי), צירוף שלם, מספרים זרים, מספר ראשוני, מספר אי-פריק, פירוק לגורמים, חבורה למחצה, מונויד, איבר יחידה, איבר הפיך (במונויד, בחוג), איבר הפכי (במונויד, בחבורה), מונויד עם צמצום, תת-חבורה, סדר של חבורה, חבורה ציקלית, חבורת אוילר, חבורה דיהדרלית, מכפלה ישרה חיצונית, קוסטים של תת-חבורה, החבורה הטריוויאלית, אינדקס של תת-חבורה, סדר של איבר, יוצר של חבורה ציקלית, קבוצת יוצרים של חבורה, מכפלה של תת-קבוצות בחבורה, תת-חבורות מתחלפות, היפוך של תת-קבוצה בחבורה, מכפלה של תת-חבורות, הומומורפיזם, אפימורפיזם, איזומורפיזם, אוטומורפיזם, גרעין, תמונה, תת-חבורה נורמלית, חבורת מנה, מרכ_ז של חבורה, הצמדה, אוטומורפיזם פנימי, חבורת האוטומורפיזמים, מר_כז של איבר, מחלקת צמידות, החבורה הסימטרית מסדר n, תמורה, מחזור, חילוף, סימן, חבורת התמורות הזוגיות, חבורה פשוטה, מכפלה ישרה פנימית, נורמליזטור, קומוטטור, תת-חבורת הקומוטטורים, אקספוננט (של חבורה אבלית), צורה קנונית (של חבורה אבלית סופית); חוג, תת-חוג, חוג בלי יחידה, אידיאל שמאלי, אידיאל ימני, אידיאל (=אידיאל דו-צדדי), הומומורפיזם (של חוגים), תמונה, גרעין, חוג מנה, אידיאל ראשוני (בחוג קומוטטיבי), מחלקי אפס, תחום שלמות, חוג פשוט, אידיאל מקסימלי, חוג אוקלידי, אידיאל ראשי, חוג ראשי, איבר ראשוני, איבר אי-פריק, תחום פריקות יחידה; פולינום אי-פריק, מימד של הרחבת שדות, שדה הרחבה ביחס לפולינום אי-פריק, מאפיין של שדה, חבורה כפלית של שדה.
מחלק (ב-<math>\ \mathbb{Z}</math>), חברות (ב-<math>\ \mathbb{Z}</math>), מחלק משותף מקסימלי, מנה ושארית (בחוג אוקלידי), צירוף שלם, מספרים זרים, מספר ראשוני, מספר אי-פריק, פירוק לגורמים, חבורה למחצה, מונויד, איבר יחידה, איבר הפיך (במונויד, בחוג), איבר הפכי (במונויד, בחבורה), מונויד עם צמצום, תת-חבורה, סדר של חבורה, חבורה ציקלית, חבורת אוילר, חבורה דיהדרלית, מכפלה ישרה חיצונית, קוסטים של תת-חבורה, החבורה הטריוויאלית, אינדקס של תת-חבורה, סדר של איבר, יוצר של חבורה ציקלית, קבוצת יוצרים של חבורה, מכפלה של תת-קבוצות בחבורה, תת-חבורות מתחלפות, היפוך של תת-קבוצה בחבורה, מכפלה של תת-חבורות, הומומורפיזם, אפימורפיזם, איזומורפיזם, אוטומורפיזם, גרעין, תמונה, תת-חבורה נורמלית, חבורת מנה, מרְכַז של חבורה, הצמדה, אוטומורפיזם פנימי, חבורת האוטומורפיזמים, מרכֵּז של איבר, מחלקת צמידות, החבורה הסימטרית מסדר n, תמורה, מחזור, חילוף, סימן, חבורת התמורות הזוגיות, חבורה פשוטה, מכפלה ישרה פנימית, נורמליזטור, קומוטטור, תת-חבורת הקומוטטורים, אקספוננט (של חבורה אבלית), צורה קנונית (של חבורה אבלית סופית); חוג, תת-חוג, חוג בלי יחידה, אידיאל שמאלי, אידיאל ימני, אידיאל (=אידיאל דו-צדדי), הומומורפיזם (של חוגים), תמונה, גרעין, חוג מנה, אידיאל ראשוני (בחוג קומוטטיבי), מחלקי אפס, תחום שלמות, חוג פשוט, אידיאל מקסימלי, חוג אוקלידי, אידיאל ראשי, חוג ראשי, איבר ראשוני, איבר אי-פריק, תחום פריקות יחידה; פולינום אי-פריק, מימד של הרחבת שדות, שדה הרחבה ביחס לפולינום אי-פריק, מאפיין של שדה, חבורה כפלית של שדה.

גרסה מ־17:21, 31 באוגוסט 2010

89-214 מבנים אלגבריים

מרצה (בשתי הקבוצות): פרופ' עוזי וישנה

מתרגלים (ארבע קבוצות): מיכאל פרידמן, דורון פרלמן


דרישות קדם

אני מניח שאתם מכירים את המושגים הבאים (ואם לא, זה הזמן להשלים): קבוצה, תת-קבוצה, איחוד, חיתוך, יחס טרנזיטיבי, יחס סימטרי, יחס רפלקסיבי, יחס שקילות, יחס סדר חלש, מחלקת שקילות, פונקציה, פונקציה חד-חד-ערכית, פונקציה על, הרכבת פונקציות.

רשימת מושגים

במהלך הקורס נלמד מהם: מחלק (ב-[math]\displaystyle{ \ \mathbb{Z} }[/math]), חברות (ב-[math]\displaystyle{ \ \mathbb{Z} }[/math]), מחלק משותף מקסימלי, מנה ושארית (בחוג אוקלידי), צירוף שלם, מספרים זרים, מספר ראשוני, מספר אי-פריק, פירוק לגורמים, חבורה למחצה, מונויד, איבר יחידה, איבר הפיך (במונויד, בחוג), איבר הפכי (במונויד, בחבורה), מונויד עם צמצום, תת-חבורה, סדר של חבורה, חבורה ציקלית, חבורת אוילר, חבורה דיהדרלית, מכפלה ישרה חיצונית, קוסטים של תת-חבורה, החבורה הטריוויאלית, אינדקס של תת-חבורה, סדר של איבר, יוצר של חבורה ציקלית, קבוצת יוצרים של חבורה, מכפלה של תת-קבוצות בחבורה, תת-חבורות מתחלפות, היפוך של תת-קבוצה בחבורה, מכפלה של תת-חבורות, הומומורפיזם, אפימורפיזם, איזומורפיזם, אוטומורפיזם, גרעין, תמונה, תת-חבורה נורמלית, חבורת מנה, מרְכַז של חבורה, הצמדה, אוטומורפיזם פנימי, חבורת האוטומורפיזמים, מרכֵּז של איבר, מחלקת צמידות, החבורה הסימטרית מסדר n, תמורה, מחזור, חילוף, סימן, חבורת התמורות הזוגיות, חבורה פשוטה, מכפלה ישרה פנימית, נורמליזטור, קומוטטור, תת-חבורת הקומוטטורים, אקספוננט (של חבורה אבלית), צורה קנונית (של חבורה אבלית סופית); חוג, תת-חוג, חוג בלי יחידה, אידיאל שמאלי, אידיאל ימני, אידיאל (=אידיאל דו-צדדי), הומומורפיזם (של חוגים), תמונה, גרעין, חוג מנה, אידיאל ראשוני (בחוג קומוטטיבי), מחלקי אפס, תחום שלמות, חוג פשוט, אידיאל מקסימלי, חוג אוקלידי, אידיאל ראשי, חוג ראשי, איבר ראשוני, איבר אי-פריק, תחום פריקות יחידה; פולינום אי-פריק, מימד של הרחבת שדות, שדה הרחבה ביחס לפולינום אי-פריק, מאפיין של שדה, חבורה כפלית של שדה.