גלים עומדים במיתר: הבדלים בין גרסאות בדף
שורה 9: | שורה 9: | ||
גל במיתר ניתן לתיאור כמו כל גל אחר בעזרת משוואת גלים: | גל במיתר ניתן לתיאור כמו כל גל אחר בעזרת משוואת גלים: | ||
<math>\ \frac{\partial^2 }{\partial t^2} \psi(t,\vec{r}) = v^2 \ \nabla ^2 \psi(t,\vec{r}) </math> | |||
: | זוהי [http://he.wikipedia.org/wiki/%D7%9E%D7%A9%D7%95%D7%95%D7%90%D7%94_%D7%93%D7%99%D7%A4%D7%A8%D7%A0%D7%A6%D7%99%D7%90%D7%9C%D7%99%D7%AA משוואה דיפרנציאלית] , שבה: | ||
* <math>\vec{r}</math> הוא המקום במרחב. | * <math>\vec{r}</math> הוא המקום במרחב. | ||
* <math>\ t</math> הוא | * <math>\ t</math> הוא הזמן. | ||
* הפונקציה <math>\ \psi (t,\vec{r})</math> היא פונקציית הגל, המתארת מהי | * הפונקציה <math>\ \psi (t,\vec{r})</math> היא פונקציית הגל, המתארת מהי משרעת הגל בכל נקודה ובכל זמן. | ||
* <math>\ v</math> היא מהירות התקדמות הגל. | * <math>\ v</math> היא מהירות התקדמות הגל. | ||
* <math>\ \nabla ^2</math> הוא האופרטור [ | * <math>\ \nabla ^2</math> הוא האופרטור [http://he.wikipedia.org/wiki/%D7%9C%D7%A4%D7%9C%D7%A1%D7%99%D7%90%D7%9F לפלסיאן]. | ||
גרסה מ־10:41, 5 בפברואר 2015
גל הינו תופעה נפוצה המתארת הפרעה המתפשטת במרחב. גלים קיימים ונחקרים בתחומים שונים בפיזיקה למשל, גלים אלקטרומגנטיים, גלי קול, גלי מים ועוד. במעבדה זו נחקור גלים עומדים במיתר, תופעה זו מתקבל מתוך תכונותיו הבסיסיות של הגל ההרמוני. במהלך הניסוי יומחש המושג "גלים עומדים" בעזרת צפייה בגלים במיתר, מדידה של נקודות הצומת וחישוב מהירות הגל.
רקע תיאורטי
באוויר, במוצק ובנוזל נוצרים גלים מכניים הודות לכוחות אלסטיים, היוצרים קשרים בין חלקי גוף שונים. בתהליך יצירת גלים בתווך מסויים כמו מים או מיתר משתתפים כוחות כבידה וכוחות מתיחות.
גל במיתר ניתן לתיאור כמו כל גל אחר בעזרת משוואת גלים:
[math]\displaystyle{ \ \frac{\partial^2 }{\partial t^2} \psi(t,\vec{r}) = v^2 \ \nabla ^2 \psi(t,\vec{r}) }[/math]
זוהי משוואה דיפרנציאלית , שבה:
- [math]\displaystyle{ \vec{r} }[/math] הוא המקום במרחב.
- [math]\displaystyle{ \ t }[/math] הוא הזמן.
- הפונקציה [math]\displaystyle{ \ \psi (t,\vec{r}) }[/math] היא פונקציית הגל, המתארת מהי משרעת הגל בכל נקודה ובכל זמן.
- [math]\displaystyle{ \ v }[/math] היא מהירות התקדמות הגל.
- [math]\displaystyle{ \ \nabla ^2 }[/math] הוא האופרטור לפלסיאן.
ופתרון של:
נוכיח טענה זו.
כאשר מדובר על הפרעה מחזורית אנו מגדירים מאפיינים לתיאורו של הגל:
- [math]\displaystyle{ f }[/math], תדירות הגל - מספר המחזורים בשנייה, נמדדת ביחידות של הרץ ([math]\displaystyle{ Hz }[/math]).
- [math]\displaystyle{ \omega }[/math], תדירות זוויתית - נירמול תדירות הגל כך ש-[math]\displaystyle{ \omega = 2 \pi f }[/math]