שיחה:89-214 סמסטר א' תשעא/תרגילים: הבדלים בין גרסאות בדף
(←שונות) |
(←שונות) |
||
שורה 38: | שורה 38: | ||
האם עליי להוכיח סגירות ואסוציאטיביות או שמספיק להוכיח רק אסוצ'? | האם עליי להוכיח סגירות ואסוציאטיביות או שמספיק להוכיח רק אסוצ'? | ||
: פורמלית, קבוצה אינה יכולה להיות חבורה למחצה: חבורה למחצה היא מערכת מתמטית הכוללת שני מרכיבים - קבוצה ופעולה בינארית. ופעולה, מעצם טיבה, היא "סגורה". לכן, אם נתונות קבוצה ופעולה, די להוכיח שהפעולה אסוציאטיבית. אם נתונות קבוצה ו"הצעה לפעולה", יש לבדוק שהפעולה אכן מוגדרת היטב, ואז שהיא גם אסוציאטיבית. | : פורמלית, קבוצה אינה יכולה להיות חבורה למחצה: חבורה למחצה היא מערכת מתמטית הכוללת שני מרכיבים - קבוצה ופעולה בינארית. ופעולה, מעצם טיבה, היא "סגורה". לכן, אם נתונות קבוצה ופעולה, די להוכיח שהפעולה אסוציאטיבית. אם נתונות קבוצה ו"הצעה לפעולה", יש לבדוק שהפעולה אכן מוגדרת היטב, ואז שהיא גם אסוציאטיבית. | ||
: לפעמים יש ברקע חבורה למחצה A עם פעולה משלה, ויש לבדוק האם תת-קבוצה B מהווה חבורה למחצה. במקרה כזה הכוונה היא לפעולה המצומצמת מ-A, כלומר לפונקציה המחזירה עבור שני אברים של B את המכפלה שלהם ב-A; א-פריורי, הפונקציה הזו עלולה להחזיר איברים של A שאינם ב-B, ואז היא אינה פעולה. | : לפעמים יש ברקע חבורה למחצה A עם פעולה משלה, ויש לבדוק האם תת-קבוצה B מהווה חבורה למחצה. במקרה כזה הכוונה היא לפעולה המצומצמת מ-A, כלומר לפונקציה המחזירה עבור שני אברים של B את המכפלה שלהם ב-A; א-פריורי, הפונקציה הזו עלולה להחזיר איברים של A שאינם ב-B, ואז היא אינה פעולה. הפונקציה '''מוגדרת היטב''' על B אם היא מחזירה ערך ב-B לכל שני אברים של B (כלומר, אם הקבוצה B סגורה ביחס לפעולה). מאידך, את האסוציאטיביות אין צורך לבדוק בנפרד, משום שהיא מתקבלת בירושה מ-A. [[משתמש:עוזי ו.|עוזי ו.]] 22:26, 31 באוקטובר 2010 (IST) |
גרסה מ־20:26, 31 באוקטובר 2010
הנחיות
ראשית, קיראו את ההנחיות בעמוד הראשי. דף זה מיועד לשאלות בנוגע לתרגילים - כולל קושיות ותהיות מתמטיות, וגם סוגיות טכניות (לפחות עד שנגְלה את אלה לדף אחר). אנא אל תפתחו כותרות ראשיות שלא לצורך. עוזי ו. 19:28, 7 באוקטובר 2010 (IST)
נושאים כלליים
תרגיל 1
תרגיל 2
שאלה 2
מהו X, הכוונה לכל X. X שייך לB,
X שייך לR??
-- ניתן לחשוב על X כעל משתנה (כמו בפולינומים), ולכן הוא לא שייך ל-R או ל-B. הרעיון הוא להסתכל על קבוצת כל הביטויים מהצורה [math]\displaystyle{ s+tx }[/math] כאשר הכפל (הפעולה) ביניהם מוגדר כפי שהוא מוגדר בשאלה (מיכאל פרידמן).
שאלה 5
האם בנוסף להנחות בשאלה מותר להניח כי:
[math]\displaystyle{ \frac{1}{\infty}=0 }[/math]?
-- כן (מיכאל פרידמן)
שאלה 6
כדי להוכיח שהקבוצה היא מונואיד (מלבד סגירות ואבר יחידה) מספיק לומר שהרכבת טרספו' לינאריות היא אסוציאטיבית או שצריך ממש להוכיח את זה? (איך מוכיחים דבר כזה?!)
- העתקות ליניאריות הן פונקציות. הרכבה של פונקציות היא תמיד אסוציאטיבית. עוזי ו. 21:51, 26 באוקטובר 2010 (IST)
שונות
שאלה כללית לגבי תרגיל 2 - כשאני מנסה להוכיח האם קבוצה היא חבורה למחצה, האם עליי להוכיח סגירות ואסוציאטיביות או שמספיק להוכיח רק אסוצ'?
- פורמלית, קבוצה אינה יכולה להיות חבורה למחצה: חבורה למחצה היא מערכת מתמטית הכוללת שני מרכיבים - קבוצה ופעולה בינארית. ופעולה, מעצם טיבה, היא "סגורה". לכן, אם נתונות קבוצה ופעולה, די להוכיח שהפעולה אסוציאטיבית. אם נתונות קבוצה ו"הצעה לפעולה", יש לבדוק שהפעולה אכן מוגדרת היטב, ואז שהיא גם אסוציאטיבית.
- לפעמים יש ברקע חבורה למחצה A עם פעולה משלה, ויש לבדוק האם תת-קבוצה B מהווה חבורה למחצה. במקרה כזה הכוונה היא לפעולה המצומצמת מ-A, כלומר לפונקציה המחזירה עבור שני אברים של B את המכפלה שלהם ב-A; א-פריורי, הפונקציה הזו עלולה להחזיר איברים של A שאינם ב-B, ואז היא אינה פעולה. הפונקציה מוגדרת היטב על B אם היא מחזירה ערך ב-B לכל שני אברים של B (כלומר, אם הקבוצה B סגורה ביחס לפעולה). מאידך, את האסוציאטיביות אין צורך לבדוק בנפרד, משום שהיא מתקבלת בירושה מ-A. עוזי ו. 22:26, 31 באוקטובר 2010 (IST)