תרגול 14 תשעח: הבדלים בין גרסאות בדף
(←פתרון) |
(←תרגיל) |
||
שורה 22: | שורה 22: | ||
פתרון: הפונקציה <math>F:A^{\{1,2\}}\to A\times A</math> המוגדרת <math>f\mapsto (f(1),f(2))</math> הפיכה. | פתרון: הפונקציה <math>F:A^{\{1,2\}}\to A\times A</math> המוגדרת <math>f\mapsto (f(1),f(2))</math> הפיכה. | ||
חח"ע: נניח <math>F(f)=F(g)</math> לכן <math>(f(1),f(2))=(g(1),g(2))</math>, ולכן <math>f(1)=g(1)\land f(2)=g(2)</math> וזו אותה פונקציה. | |||
על: יהי <math>(a,b)\in A\times A</math>, הפונקציה שמוגדרת ע"י <math>1\mapsto a,2\mapsto b</math> היא מקור. | |||
===משפט (קנטור-שרדר-ברנשטיין)=== | ===משפט (קנטור-שרדר-ברנשטיין)=== |
גרסה אחרונה מ־08:18, 21 בינואר 2018
חזרה לדף מערכי התרגול.
עוצמות
הגדרה. יהיו [math]\displaystyle{ A,B }[/math] שתי קבוצות. אזי:
- אם קיימת [math]\displaystyle{ f:A\to B }[/math] חח"ע ועל אז אומרים של-[math]\displaystyle{ A }[/math] ול-[math]\displaystyle{ B }[/math] יש אותה עוצמה. סימון [math]\displaystyle{ |A|=|B| }[/math].
- אם קיימת [math]\displaystyle{ f:A\to B }[/math] חח"ע אז אומרים כי העוצמה של [math]\displaystyle{ A }[/math] קטנה או שווה לזו של [math]\displaystyle{ B }[/math]. סימון [math]\displaystyle{ |A|\leq|B| }[/math].
- אם [math]\displaystyle{ |A|\leq|B| }[/math] וגם [math]\displaystyle{ |A|\not=|B| }[/math] אזי אומרים כי העוצמה של [math]\displaystyle{ A }[/math] קטנה ממש מהעוצמה של [math]\displaystyle{ B }[/math]. סימון [math]\displaystyle{ |A|\lt |B| }[/math].
הערה: בעזרת אקסיומת הבחירה מוכיחים כי אם קיימת [math]\displaystyle{ f:A\to B }[/math] על אזי [math]\displaystyle{ |B|\leq |A| }[/math].
תרגיל
הוכיחו כי [math]\displaystyle{ |P(\mathbb{N})|=|P(\mathbb{N})-\{\varnothing\}| }[/math].
פתרון
נגדיר פונקציה [math]\displaystyle{ f:P(\mathbb{N})\to P(\mathbb{N})-\{\varnothing\} }[/math] ע"י [math]\displaystyle{ \{n\}\mapsto \{n+1\},\varnothing \mapsto \{1\} }[/math] וכל [math]\displaystyle{ B }[/math] שאינה נקודון ואינה הקבוצה הריקה נשלח לעצמה.
הפיכה כי יש לה הופכית: [math]\displaystyle{ f^{-1}:P(\mathbb{N})-\{\varnothing\}\to P(\mathbb{N}) }[/math] ע"י [math]\displaystyle{ \{1\}\mapsto \varnothing,\{n\geq 2\}\mapsto \{n-1\} }[/math] וכל [math]\displaystyle{ B }[/math] שאינה נקודון נשלחת לעצמה.
תרגיל
הוכיחו כי [math]\displaystyle{ |A\times A| = |A^{\{1,2\}}| }[/math].
פתרון: הפונקציה [math]\displaystyle{ F:A^{\{1,2\}}\to A\times A }[/math] המוגדרת [math]\displaystyle{ f\mapsto (f(1),f(2)) }[/math] הפיכה.
חח"ע: נניח [math]\displaystyle{ F(f)=F(g) }[/math] לכן [math]\displaystyle{ (f(1),f(2))=(g(1),g(2)) }[/math], ולכן [math]\displaystyle{ f(1)=g(1)\land f(2)=g(2) }[/math] וזו אותה פונקציה.
על: יהי [math]\displaystyle{ (a,b)\in A\times A }[/math], הפונקציה שמוגדרת ע"י [math]\displaystyle{ 1\mapsto a,2\mapsto b }[/math] היא מקור.
משפט (קנטור-שרדר-ברנשטיין)
אם [math]\displaystyle{ |B|\leq|A| }[/math] וגם [math]\displaystyle{ |A|\leq|B| }[/math] אז [math]\displaystyle{ |B|=|A| }[/math].
בהמשך נקצר לק.ש.ב.
תרגיל
הוכיחו: [math]\displaystyle{ |\mathbb{Q}\cap [0,1]|=\aleph_0 }[/math].
פתרון
לפי ק.ש.ב. כי הקבוצה מוכלת ברציונליים ומכילה [math]\displaystyle{ \aleph_0 }[/math] שברים מהצורה [math]\displaystyle{ \frac{1}{n} }[/math].
תרגיל
הוכיחו כי עוצמת כל הקבוצות הבאות שווה - כל קטעים מהצורה [math]\displaystyle{ [a,b],(a,b),[a,b),(a,b] }[/math] כאשר [math]\displaystyle{ a\lt b }[/math] ממשיים.
פתרון
נראה שכולם שווי עוצמה לקטע [math]\displaystyle{ (0,1) }[/math].
ראשית נגדיר [math]\displaystyle{ f:(0,1)\rightarrow (a,b) }[/math] ע"י [math]\displaystyle{ f(x)=a+(b-a)x }[/math] חח"ע ועל. השאר עם ק.ש.ב.
טענה: הקטע [math]\displaystyle{ (\frac{-\pi}{2},\frac{\pi}{2}) }[/math] בעל עוצמה שווה ל-[math]\displaystyle{ \mathbb{R} }[/math].
הוכחת הטענה: הפונקציה [math]\displaystyle{ \tan:(\frac{-\pi}{2},\frac{\pi}{2})\to \mathbb{R} }[/math] הפיכה בתחום הזה ולכן חח"ע ועל.
תרגיל
תהא [math]\displaystyle{ A }[/math] קבוצה. הוכיחו כי [math]\displaystyle{ |A|\leq |P(A)| }[/math].
פתרון: נגדיר את הפונקציה [math]\displaystyle{ f:A|\to P(A) }[/math] ע"י [math]\displaystyle{ a \mapsto \{a\} }[/math] והיא חח"ע.
תהא [math]\displaystyle{ A }[/math] קבוצה. הוכיחו כי [math]\displaystyle{ |A|\neq |P(A)| }[/math].
פתרון: נניח בשלילה כי [math]\displaystyle{ |A|= |P(A)| }[/math] אזי קיימת [math]\displaystyle{ f: A\to P(A) }[/math] הפיכה, בפרט על. נגדיר [math]\displaystyle{ X=\{a\in A: a\notin f(a)\} }[/math]. זוהי תת קבוצה של [math]\displaystyle{ A }[/math] ולכן, מכיוון ש-[math]\displaystyle{ f }[/math] על, קיים [math]\displaystyle{ x\in A }[/math] כך ש-[math]\displaystyle{ f(x)=X }[/math]. האם [math]\displaystyle{ x\in X }[/math]? אם לא, לפי הגדרת [math]\displaystyle{ X }[/math] נקבל כי [math]\displaystyle{ x\notin f(x)=X }[/math], סתירה. אם כן אז [math]\displaystyle{ x\in X=f(x) }[/math] אבל לפי הגדרת [math]\displaystyle{ X }[/math] מתקיים [math]\displaystyle{ x\notin f(x) }[/math] סתירה. מש"ל.