אנליזה מתקדמת למורים תרגול 6: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
שורה 1: שורה 1:
חזרה ל[[מערכי תרגול באנליזה מתקדמת למורים | מערכי תרגול]].
חזרה ל[[מערכי תרגול באנליזה מתקדמת למורים | מערכי תרגול]].


== אקסופנט==
==אקסופנט==


ראינו בשבוע שעבר שהפונקציה <math>f(x+yi)=e^x(\cos y+i\sin y)</math> גזירה ומקיימת <math>f'(z)=f(z)</math>, וראיתם בהרצאה שהיא מקיימת את כל התכונות הנדרשות לפונקציית האקספוננט, ולכן הגדרנו: <math>e^z=e^x(\cos y+i\sin y)</math>.
ראינו בשבוע שעבר שהפונקציה <math>f(x+yi)=e^x(\cos y+i\sin y)</math> גזירה ומקיימת <math>f'(z)=f(z)</math>, וראיתם בהרצאה שהיא מקיימת את כל התכונות הנדרשות לפונקציית האקספוננט, ולכן הגדרנו: <math>e^z=e^x(\cos y+i\sin y)</math>.
שורה 44: שורה 44:


<math>=\frac{1}{4i}(e^{iz}e^{iw}+e^{iz}e^{-iw}-e^{-iz}e^{iw}-e^{-iz}e^{-iw}+e^{iz}e^{iw}-e^{iz}e^{-iw}+e^{-iz}e^{iw}-e^{-iz}e^{-iw})=\frac{1}{4i}(2e^{iz}e^{iw}-2e^{-iz}e^{-iw})=\frac{e^{i(z+w)}-e^{-i(z+w)}}{2i}=\sin (z+w)</math>
<math>=\frac{1}{4i}(e^{iz}e^{iw}+e^{iz}e^{-iw}-e^{-iz}e^{iw}-e^{-iz}e^{-iw}+e^{iz}e^{iw}-e^{iz}e^{-iw}+e^{-iz}e^{iw}-e^{-iz}e^{-iw})=\frac{1}{4i}(2e^{iz}e^{iw}-2e^{-iz}e^{-iw})=\frac{e^{i(z+w)}-e^{-i(z+w)}}{2i}=\sin (z+w)</math>
==לוגריתם==
אנחנו רוצים פונקציה הופכית לאקספוננט. הבעיה היא, שפונקציית האקספונט לא חח"ע. מה עושים? שמים לב שבתחום <math>\{z|-\pi<Im(z)\leq \pi\}</math> היא כן חח"ע, מגדירים שם את ההופכית, וקורים לה <math>\log</math>.
===הגדרה מפורשת===
<math>\log(z)=\ln |z|+iarg(z)</math>
לדוגמא: <math>\log(2\text{cis}\frac{5\pi}{4})=\ln 2+iarg(\log(2\text{cis}\frac{5\pi}{4}))=\ln 2+\frac{-3\pi}{4}i</math>.
====תרגיל====
הוכיחו שלכל מספר מרוכב <math>z\neq 0</math> שאיננו ממשי שלילי מתקיים: <math>\log(\overline{z})=\overline{\log(z)}</math>.
=====פתרון=====
נשתמש בעובדה מהעבר: <math>arg(\overline{z}=-arg(z)</math> (אתם זוכרים שכשדיברנו על cis אמרנו שבצמוד לוקחים את מינוס הזוית? וכמובן אם הזוית המקורית נמצאת בין מינוס פאי לפאי, אז גם המינוס שלה, וכאן משתמשים בהנחה שהוא לא שלילי)
<math>\log(\overline{z})=\ln |\overline{z}|+iarg(\overline{z})=\ln |z|-iarg(z)=\overline{\ln |z|+iarg(z)}=\overline{\log(z)}</math>
==חזקות==
בממשיים מגדירים: <math>x^y=e^{y\ln x}</math>. אז נעשה זאת גם כאן: <math>z^w=e^{w\log z}</math>.
לדוגמא: <math>i^{0.5-\frac{2}{\pi}i}=e^{(0.5-\frac{2}{\pi}i)\log(i)}=e^{(0.5-\frac{2}{\pi}i)(\ln|i|+iarg(i))}=e^{(0.5-\frac{2}{\pi}i)\cdot \frac{\pi}{2}i}=e^{1+\frac{\pi}{4}i}=\frac{e\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i</math>

גרסה מ־12:48, 11 בדצמבר 2018

חזרה ל מערכי תרגול.

אקסופנט

ראינו בשבוע שעבר שהפונקציה [math]\displaystyle{ f(x+yi)=e^x(\cos y+i\sin y) }[/math] גזירה ומקיימת [math]\displaystyle{ f'(z)=f(z) }[/math], וראיתם בהרצאה שהיא מקיימת את כל התכונות הנדרשות לפונקציית האקספוננט, ולכן הגדרנו: [math]\displaystyle{ e^z=e^x(\cos y+i\sin y) }[/math].

לדוגמא, נחשב [math]\displaystyle{ e^{1+\frac{\pi}{4}i} }[/math]:

[math]\displaystyle{ e^{1+\frac{\pi}{4}i}=e^1(\cos \frac{\pi}{4} +i\sin \frac{\pi}{4})=e(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)=\frac{e\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i }[/math].

תרגיל

כידוע, בממשיים מתקיים [math]\displaystyle{ e^x\gt 0 }[/math]. מה לגבי המרוכבים? האם קיים [math]\displaystyle{ z\in \mathbb{C} }[/math] כך ש [math]\displaystyle{ e^z }[/math] הוא ממשי וקטן מאפס?

פתרון

כן! נתחיל מדוגמא, ואז נבין את הפתרון הכללי. נחפש [math]\displaystyle{ x,y\in \mathbb{R} }[/math] כך ש [math]\displaystyle{ e^x(\cos y+i\sin y)=-e }[/math].

ראשית, כדי שהתוצאה תהיה ממשית דרוש [math]\displaystyle{ \sin y=0 }[/math], ולכן [math]\displaystyle{ y=0+\pi k }[/math]. כעת נקבל [math]\displaystyle{ \cos y\in \{-1,0,1\} }[/math], וכיון שאנחנו רוצים לקבל מספר שלילי נרצה [math]\displaystyle{ \cos y=-1 }[/math], ולכן ניקח [math]\displaystyle{ y=\pi }[/math].

מה שקיבלנו עד כה זה [math]\displaystyle{ e^{x+\pi i}=-e^x }[/math], ולכן אם ניקח [math]\displaystyle{ x=\ln e=1 }[/math] נקבל [math]\displaystyle{ e^{1+\pi i}=-e }[/math] כדרוש.

באופן כללי: יהי [math]\displaystyle{ t\lt 0 }[/math] ממשי. נבחר [math]\displaystyle{ z=\ln |t|+\pi i }[/math] ונקבל [math]\displaystyle{ e^z=-e^{\ln |t|}=-|t|=t }[/math].

תרגיל

הוכיחו שמתקיים: [math]\displaystyle{ e^{\overline{z}}=\overline{e^z} }[/math]

פתרון

לפי הגדרה: [math]\displaystyle{ e^{\overline{z}}=e^{x-yi}=e^x(\cos(-y)+i\sin(-y))=e^x(\cos y-i\sin y)=\overline{e^x(\cos y+i\sin y)}=\overline{e^z} }[/math].

טריגו

הגדרתם בהרצאה את הפונקציות הטריגונומטריות [math]\displaystyle{ \sin z=\frac{e^{iz}-e^{-iz}}{2i},\cos z=\frac{e^{iz}+e^{-iz}}{2} }[/math].

לדוגמא, נחשב:

[math]\displaystyle{ \sin(\frac{\pi}{4}+i)=\frac{e^{i(\frac{\pi}{4}+i)}-e^{-i(\frac{\pi}{4}+i)}}{2i}=\frac{e^{-1+\frac{\pi}{4}i}-e^{1-\frac{\pi}{4}i}}{2i}= }[/math]

[math]\displaystyle{ =\frac{e^{-1}(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)-e(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i)}{2i}=\frac{\frac{\sqrt{2}}{2}(\frac{1}{e}-e)+\frac{\sqrt{2}}{2}(\frac{1}{e}+e)i}{2i}=\frac{\sqrt{2}}{4}(\frac{1}{e}+e)-\frac{\sqrt{2}}{4}(\frac{1}{e}-e)i }[/math]

תרגיל

הוכיחו: [math]\displaystyle{ \sin(z+w)=\sin z\cos w+\cos z\sin w }[/math].

פתרון=

נפתח את צד ימין:

[math]\displaystyle{ \sin z\cos w+\cos z\sin w=\frac{e^{iz}-e^{-iz}}{2i}\cdot \frac{e^{iw}+e^{-iw}}{2}+\frac{e^{iz}+e^{-iz}}{2}\cdot \frac{e^{iw}-e^{-iw}}{2i}= }[/math]

[math]\displaystyle{ =\frac{1}{4i}(e^{iz}e^{iw}+e^{iz}e^{-iw}-e^{-iz}e^{iw}-e^{-iz}e^{-iw}+e^{iz}e^{iw}-e^{iz}e^{-iw}+e^{-iz}e^{iw}-e^{-iz}e^{-iw})=\frac{1}{4i}(2e^{iz}e^{iw}-2e^{-iz}e^{-iw})=\frac{e^{i(z+w)}-e^{-i(z+w)}}{2i}=\sin (z+w) }[/math]

לוגריתם

אנחנו רוצים פונקציה הופכית לאקספוננט. הבעיה היא, שפונקציית האקספונט לא חח"ע. מה עושים? שמים לב שבתחום [math]\displaystyle{ \{z|-\pi\lt Im(z)\leq \pi\} }[/math] היא כן חח"ע, מגדירים שם את ההופכית, וקורים לה [math]\displaystyle{ \log }[/math].

הגדרה מפורשת

[math]\displaystyle{ \log(z)=\ln |z|+iarg(z) }[/math]

לדוגמא: [math]\displaystyle{ \log(2\text{cis}\frac{5\pi}{4})=\ln 2+iarg(\log(2\text{cis}\frac{5\pi}{4}))=\ln 2+\frac{-3\pi}{4}i }[/math].

תרגיל

הוכיחו שלכל מספר מרוכב [math]\displaystyle{ z\neq 0 }[/math] שאיננו ממשי שלילי מתקיים: [math]\displaystyle{ \log(\overline{z})=\overline{\log(z)} }[/math].

פתרון

נשתמש בעובדה מהעבר: [math]\displaystyle{ arg(\overline{z}=-arg(z) }[/math] (אתם זוכרים שכשדיברנו על cis אמרנו שבצמוד לוקחים את מינוס הזוית? וכמובן אם הזוית המקורית נמצאת בין מינוס פאי לפאי, אז גם המינוס שלה, וכאן משתמשים בהנחה שהוא לא שלילי) [math]\displaystyle{ \log(\overline{z})=\ln |\overline{z}|+iarg(\overline{z})=\ln |z|-iarg(z)=\overline{\ln |z|+iarg(z)}=\overline{\log(z)} }[/math]

חזקות

בממשיים מגדירים: [math]\displaystyle{ x^y=e^{y\ln x} }[/math]. אז נעשה זאת גם כאן: [math]\displaystyle{ z^w=e^{w\log z} }[/math].

לדוגמא: [math]\displaystyle{ i^{0.5-\frac{2}{\pi}i}=e^{(0.5-\frac{2}{\pi}i)\log(i)}=e^{(0.5-\frac{2}{\pi}i)(\ln|i|+iarg(i))}=e^{(0.5-\frac{2}{\pi}i)\cdot \frac{\pi}{2}i}=e^{1+\frac{\pi}{4}i}=\frac{e\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i }[/math]