88-133 תשפ"ב סמסטר ב/תיכוניסטים: הבדלים בין גרסאות בדף
אין תקציר עריכה |
|||
שורה 57: | שורה 57: | ||
* קוסינוס: <math>\cos x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \pm \cdots \quad\forall x</math> | * קוסינוס: <math>\cos x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \pm \cdots \quad\forall x</math> | ||
==פתרונות מבחנים== | |||
ע"י לירן מנצורי ויונתן סמידוברסקי | |||
#[[מדיה:לירן_מנצורי_ויונתן_סמידוברסקי_אינפי_2_2010_פתרון.pdf| פתרון מבחן 2010, מועד א']] | |||
#[[מדיה:לירן_מנצורי_ויונתן_סמידוברסקי_אינפי_2_2010ב_פתרון.pdf| פתרון מבחן 2010, מועד ב']] | |||
ע"י יובל בר וחברים | |||
*[[מדיה:מבחן של נבו2010 מועד א+ב.pdf| פתרון מבחן 2010, מועד א'+ב']] | |||
==הודעות== | ==הודעות== | ||
שורה 133: | שורה 144: | ||
#[[מדיה:אינפי 2 תיכוניסטים- תרגול 9.pdf| סדרות פונקציות + הגדרת טורי פונקציות]] | #[[מדיה:אינפי 2 תיכוניסטים- תרגול 9.pdf| סדרות פונקציות + הגדרת טורי פונקציות]] | ||
#[[מדיה:אינפי 2 תיכוניסטים- תרגול 10.pdf| טורי פונקציות + אינטגרציה וגזירה איבר איבר]] | #[[מדיה:אינפי 2 תיכוניסטים- תרגול 10.pdf| טורי פונקציות + אינטגרציה וגזירה איבר איבר]] | ||
גרסה מ־14:51, 8 ביולי 2022
מיקוד ע"י פרופ' בועז צבאן
סיכומים, קישורים, תרגילים
- תרגילים, מבחנים והפתרונות שלהם ע"י שגיא צנציפר
- רשימת משפטים וההוכחות שלהם ע"י עידו גולדנברג
- אוסף מבחנים של נבו וצבאן ע"י אורי פקלק
- סיכום מפורט של ההרצאות ע"י עידו קצב
- סיכום משפטים אינפי 2 ע"י ליאן קובי
- חקירה פונקציות/טורים/טורי חֲזָקוֹת ע"י יובל בר
- חישובים וקירובים באמצעות טיילור-מקלורן ע"י יונתן סמידוברסקי
- האינטגרל הלא מסוים ושיטות אינטגרציה ע"י יונתן סמידוברסקי
מחשבונים
מבחן ההשוואה הראשון
יהיו [math]\displaystyle{ \sum_{n=1}^\infty a_n , \sum_{n=1}^\infty b_n }[/math] שני טורים אינסופיים. אם מתקיים החל ממקום מסוים [math]\displaystyle{ 0\le a_n \le b_n }[/math], אז:
- אם [math]\displaystyle{ \sum_{n=1}^\infty b_n }[/math] מתכנס, גם [math]\displaystyle{ \sum_{n=1}^\infty a_n }[/math] מתכנס; לכן גם:
- אם [math]\displaystyle{ \sum_{n=1}^\infty a_n }[/math] מתבדר, גם [math]\displaystyle{ \sum_{n=1}^\infty b_n }[/math] מתבדר.
מבחן ההשוואה השני (הנקרא גם מבחן ההשוואה הגבולי)
יהיו [math]\displaystyle{ \sum_{n=1}^\infty a_n , \sum_{n=1}^\infty b_n }[/math] שני טורים חיוביים אינסופיים, שעבורם הגבול [math]\displaystyle{ \lim_{n \to \infty}\frac{a_n}{b_n}=L }[/math] קיים. אז:
- אם [math]\displaystyle{ 0\lt L\lt \infty }[/math], הטורים מתכנסים או מתבדרים יחדיו.
- אם [math]\displaystyle{ L=0 }[/math], אם [math]\displaystyle{ \sum_{n=1}^\infty b_n }[/math] מתכנס אז [math]\displaystyle{ \sum_{n=1}^\infty a_n }[/math] מתכנס ואם [math]\displaystyle{ \sum_{n=1}^\infty a_n }[/math] מתבדר אז [math]\displaystyle{ \sum_{n=1}^\infty b_n }[/math] מתבדר (אבל ההפך אינו בהכרח נכון).
- אם [math]\displaystyle{ L=\infty }[/math] אם [math]\displaystyle{ \sum_{n=1}^\infty b_n }[/math] מתבדר אז [math]\displaystyle{ \sum_{n=1}^\infty a_n }[/math] מתבדר ואם [math]\displaystyle{ \sum_{n=1}^\infty a_n }[/math] מתכנס אז [math]\displaystyle{ \sum_{n=1}^\infty b_n }[/math] מתכנס (אבל ההפך אינו בהכרח נכון).
טורי טיילור ומקלורן של פונקציות נפוצות
להלן מספר טורי טיילור ומקלורן של פונקציות נפוצות.
- אקספוננט: [math]\displaystyle{ \mathrm{e}^{x} = \sum^{\infin}_{n=0} \frac{x^n}{n!}\quad\forall x }[/math]
- לוגריתם טבעי: [math]\displaystyle{ \ln(1+x) = \sum^{\infin}_{n=1} \frac{(-1)^{n-1}}{n} x^{n}\quad\mbox{ for } \left| x \right| \lt 1 }[/math]
נשים לב שנוכל להציב [math]\displaystyle{ x=-1 }[/math] ונקבל טור את הטור ללא [math]\displaystyle{ (-1)^{n-1} }[/math] ועם מינוס על כולו.
- סדרה הנדסית (טור גאומטרי): [math]\displaystyle{ \frac{x^m}{1-x} = \sum^{\infin}_{n=m} x^n\quad\mbox{ for } \left| x \right| \lt 1 }[/math]
- סינוס: [math]\displaystyle{ \sin x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1}= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \pm \cdots \quad\forall x }[/math]
- קוסינוס: [math]\displaystyle{ \cos x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \pm \cdots \quad\forall x }[/math]
פתרונות מבחנים
ע"י לירן מנצורי ויונתן סמידוברסקי
ע"י יובל בר וחברים
הודעות
- זה דף שנוצר ומתוחזק על ידי יובל בר - סטודנט שנה א' - לא דף של הסגל ולא מקושר אל הסגל.
פינת הפתגמים המעודדים
- יויו אקסטרים זה לא ספורט
- תירס בפחית זה אחד השימורים היותר טובים
- חצי ים המלח לא שלנו, החצי השני של האחים עופר
- אפילו אם לא הולך לכם בשאלה מסוימת, העיקר זה להבין את זה ולוותר
- עדיף לנסות לדוג כל היום ולהצליח רק פעם בשנה מללמוד מתמטיקה
- שום דבר אינו יכול לעמעם את האור שזורח מבפנים
- יהי [math]\displaystyle{ \varepsilon \gt 0 }[/math], כעת מתקיים [math]\displaystyle{ \forall_{taalool}\exists_{N\in \mathbb{N}}:\forall_{n\ge N}:\left| taalool_n-gvool \right|\le \varepsilon }[/math]
- כדי למנוע כאבי ידיים ועיניים במהלך הלימודים, השתמשו בחוק ה20, 20, 20:
כל 20 דקות הסתכלו על משהו במרחק 20 מטר ותבלו 20 שנה ביערות.
- מטריצה מתכנסת במ"ש היא פיתוח טיילור של טור ז'ורדן המתכנס בוקטורים העצמיים.
- משפט ניצן: אינטגרציה זה לא קשה, זה פשוט למצוא פונקציה קדומה.
חומר עזר
- תקציר הקורס ע"י פרופ' בועז צבאן
- חוברת תרגילים ע"י פרופ' בועז צבאן
- מבחנים ע"י פרופ' בועז צבאן:
הרצאות מוקלטות של פרופ' בועז צבאן
- לא היה
- שימושי טיילור
- אינטגרלים לא מסוימים
- המשך אינטגרלים
- אינטגרל של פונקציה רציונלית
- האינטגרל המסוים
- אינטגרל עליון ותחתון
- שוב אינטגרל עליון ותחתון
- אינטגרל מסוים, כיסויים וקבוצות אפסיות
בבנייה
חידות
תודה לרועי תורג'מן על החידות
- יהיו 2 מספרים טבעיים [math]\displaystyle{ m,l\in\mathbb{N} }[/math].
חשבו את גבול הסדרה:
[math]\displaystyle{ \displaystyle {}{a_n=\frac{\displaystyle{}\sum ^{m}_{k=1}k^n}{\displaystyle {}L^n}} }[/math] - תהי פונקציה חיובית וחסומה f הגזירה אינסוף פעמים.
נתון שנגזרותיה חסומות באופן אחיד ב[math]\displaystyle{ \mathbb{R} }[/math].
חשבו את הגבולות הבאים:- [math]\displaystyle{ \displaystyle \lim_{x\to\infty }f^{(2022)}(x) }[/math]
- [math]\displaystyle{ \displaystyle \lim_{x\to\infty }xf'(x) }[/math]
- [math]\displaystyle{ \displaystyle \forall_{k\in\mathbb{N}}:\lim_{x\to\infty }x\ln(x)f^{(k)}(x) }[/math]
תרגולים
תרגולים של הדר:
- טורי טיילור ומקלורן
- סיום טורי טיילור + אינטגרל לא מסויים: שיטת ההצבה ואינטגרציה בחלקים
- אינטגרל לא מסויים: פונקציות רציונליות + הצבות מיוחדות
- אינטגרל מסויים לפי רימן + אינטגרל מסויים לפי דרבו
- סיום אינטגרל רימן/דרבו + למת העידון + קבוצות אפסיות
- תכונות האינטגרל המסויים + המשפט המסויים של החשבון האינפיניטסימלי
- שיטות אינטגרציה לאינטגרל מסויים + אינטגרלים לא אמיתיים סוג ראשון
- מבחן דריכלה להתכנסות אינטגרלים לא אמיתיים מסוג ראשון + אינטגרלים לא אמיתיים מסוג שני
- סדרות פונקציות + הגדרת טורי פונקציות
- טורי פונקציות + אינטגרציה וגזירה איבר איבר