88-165 תשעא סמסטר קיץ/תרגילי בית

מתוך Math-Wiki
גרסה מ־06:01, 26 באוגוסט 2011 מאת Liord (שיחה | תרומות) (←‏תרגיל 2)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

דף זה כולל קישורים והנחיות לגבי תרגילי הבית.


תרגיל 1

יש להגיש ב-11.8

תרגיל בית 1

פתרון תרגיל בית 1

תרגיל 2

יש להגיש ב- 18.8

תרגיל בית 2

פתרון תרגיל בית 2

ניסוח מחדש של שאלה 2 סעיף ב': לבצק שממנו מכינים 150 עוגיות מכניסים [math]\displaystyle{ n }[/math] צימוקים. בהנחה שהתפלגות מספר הצימוקים בכל עוגייה נשאר פואסוני (הממוצע איננו 3 במקרה. מהו הממוצע אם כן?), מה הסיכוי שבקניית העוגייה הראשונה שתימכר מבין 150 העוגיות שהוכנו מהבצק לא יוחזר הכסף לקונה?

הערה לגבי שאלה 4 סעיף ב': בניגוד למה שאמרתי היום לשני הסטודנטים שפנו אליי בשעות הקבלה, אין שום בעיה עם השאלה. צריך לפתח את הנוסחה של פונקציית ההתפלגות למשהו יחסית פשוט. רמז - יש להיעזר בנוסחת טור טיילור של האקספוננט [math]\displaystyle{ e^z=\sum_{n=0}^\infty \frac{z^n}{n!} }[/math].

בהצלחה! Adam Chapman 17:43, 16 באוגוסט 2011 (IDT)

הבהרה לשאלה 4 - סעיף ב':
הנכון הוא כפי שענה אדם לשואלים - קיימת אי-תלות (שצריך להראות חישובית ולא להסתפק בנימוק מילולי).
אני (ליאור) שדיברתי על תלות - טעיתי.
הכוונה בסעיף ב' היא - ידוע לי K (מאורע A) וידוע לי J (מאורע B) אך לא ידוע לי ש- K+J=x הוא דווקא קבוע מסויים כלשהו, אלא רק שזהו מ"מ פואסוני.
להמחשה ויזואלית: בעל המסעדה שעומד ביציאה, רואה רק אנשים שחולפים על פניו והם מרוצים/לא מרוצים,
לא ידוע לו מספרם הכולל של הסועדים באותו יום (המספר אינו קבוע, ידוע לו רק שהתפלגות מספר הסועדים הכוללת היא פואסונית וכן שבהסתברות p כ"א מהם מרוצה).
~ ליאור.

תרגיל 3

יש להגיש ב-25.8

תרגיל בית 3

פתרון תרגיל בית 3