לינארית 2 לתיכוניסטים תש"ע
- [math]\displaystyle{ \begin{bmatrix} \lambda & 0 & 0 \\ 0 &\lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} }[/math]
הוראות
כאן המקום לשאול שאלות. כל שעליכם לעשות הוא ללחוץ על [עריכה] (משמאל לכותרת "שאלות"), להוסיף בתחתית הדף את השורה הבאה:
== כותרת שאלה ==
ולכתוב מתחתיה את השאלה שלכם.
שאלות
שאלה לדוגמא
מה זה Span?
תשובה
אוסף כל הצירופים הלינאריים --ארז שיינר 20:07, 22 באוקטובר 2009 (UTC)
- הבנתי, תודה.
- בשמחה
- יותר קונסטרוקטיבי לחשוב על זה כ"המרחב הנפרש", התת-מרחב הקטן ביותר שמכיל את הקבוצה הנתונה.
- בשמחה
שיעורים באינפי
- יש לי שאלה שלא קשורה ללינארית (מצטער על המקום הלא רלוונטי, אבל מחר התרגיל הבא שלנו באינפי):
- למתי יש להגיש את התרגיל שרועי נתן לנו באינפי?
תרגיל 2.14
איך פותרים את תרגיל 2.14?
תשובה
לפי ההדרכה. אפשר להניח שתרגיל 1.10 הוא נכון. תזכורת: יש n שורשי יחידה מסדר n. --ארז שיינר 12:13, 29 באוקטובר 2009 (UTC)
- בנוסף, אפשר להעזר בתרגיל 7.4 בעמוד 76 --ארז שיינר 13:18, 29 באוקטובר 2009 (UTC)
שאלה נוספת בנוגע לאותו תרגיל:
- בנוגע להגדרה שניתנה על p^0, p, p^2, ... , p^n-1
- האם הכוונה היא ש-P הוא הערך העצמי של הוקטור?
- בנוסף, איך אני יכול להסיק שכל ערכי ה-P שונים זה מזה? (נראה הכרחי, אחרת הוקטורים לא בת"ל)
תשובה
שים לב שp הינו שורש יחידה מסדר n. כפי שציינתי קודם לכן, יש n שורשי יחידה שונים מסדר n. הערך העצמי של הוקטור אינו p בהכרח ואינו רלוונטי לשאלה 2.14. --ארז שיינר 16:23, 29 באוקטובר 2009 (UTC)
- הבנתי, תודה
- אבל מדובר בשדה F כלשהו. כיצד ניתן להסביר שלמשוואה x^n-1=0 מעל שדה F יש בדיוק n פתרונות?
- יפה מאד! זו הערה נכונה, לא שמתי לב לכך. התייחסו למטריצה כמרוכבת, ולא כמעל שדה כלשהו. --ארז שיינר 18:09, 29 באוקטובר 2009 (UTC)
- אבל מדובר בשדה F כלשהו. כיצד ניתן להסביר שלמשוואה x^n-1=0 מעל שדה F יש בדיוק n פתרונות?
עוד שאלה, ניתן להניח שתרגיל 7.4 בעמוד 76 נכון?
- כן. צריך להסביר היטב אבל
- תודה רבה על העזרה - אבל נותרתי עם שאלה אחת... למה הכוונה "שורשי היחידה", אם לא לערכים של למדא שיאפסו את הפולינום האופייני?
- שורשי יחידה לא קשורים לפולינום אופיינים או כלל למטריצות. שורשי יחידה מסדר n הם מספרים שאם תעלה אותם בחזקת n תקבל 1. במילים אחרות הם השורשים של הפולינום [math]\displaystyle{ z^n=1 }[/math]. --ארז שיינר 09:53, 31 באוקטובר 2009 (UTC)
תרגיל 3.17
כיצד מוצאים מטריצה הופכית בעזרת פולינום אופייני? (משפט קיילי המילטון רק אומר שהמטריצה מאפסת את הפולינום האופייני שלה)
אני אנסה להראות דרך
[math]\displaystyle{ 0=p(A)=A^n+c_{n-1}A^{n-1}+\cdots+c_1A+(-1)^n\det(A)I_n }[/math]
שזה כמו
[math]\displaystyle{ -(-1)^n\det(A)I_n = A(A^{n-1}+c_{n-1}A^{n-2}+\cdots+c_{1}I_n) }[/math],
נכפיל בהופכית של A מצד שמאל
[math]\displaystyle{ A^{-1}=\frac{(-1)^{n-1}}{\det(A)}(A^{n-1}+c_{n-1}A^{n-2}+\cdots+c_{1}I_n) }[/math].
מקווה שעזרתי, סער
- פתרון יפה, אבל איך יודעים שA הפיכה?
- אם יש מטריצה הופכית, אז המטריצה הפיכה. הוא הראה שיש מטריצה שאם תכפול בה בA תקבל את מטריצת היחידה. זה אומר ישירות שA הפיכה. --ארז שיינר 12:07, 30 באוקטובר 2009 (UTC)
תרגיל 4.3
אני לא כל כך מבין איך למצוא את המטריצה המשולשית העליונה הדומה - מישהו יכול לעזור?
תשובה
בוא ננסה ביחד, ותסביר באיזה שלב אתה לא מצליח. נניח A מטריצה ריבועית, רוצים לשלש אותה:
- מוצאים את הע"ע של המטריצה
- לוקחים ערך עצמי [math]\displaystyle{ \lambda_1 }[/math] עם ריבוי אלגברי מקסימלי (במילים פשוטות, שורש של הפולינום האופייני שהחזקה שלו בפולינום היא מקסימלית). למשל, 2 אם הפולינום האופייני היה [math]\displaystyle{ f_A=(\lambda-2)^2(\lambda-1) }[/math].
- לוקחים בסיס למרחב העצמי של [math]\displaystyle{ \lambda_1 }[/math], כלומר הוקטורים העצמיים ש[math]\displaystyle{ \lambda_1 }[/math] הוא הע"ע שלהם. נניח הבסיס הוא [math]\displaystyle{ v_1,v_2,...,v_k }[/math]. משלימים את הבסיס הזה לבסיס למרחב [math]\displaystyle{ v_1,v_2,...,v_n }[/math].
- יוצרים מטריצה M שעמודותיה הן הוקטורים [math]\displaystyle{ v_1,v_2,...,v_n }[/math].
- [math]\displaystyle{ M^{-1}AM }[/math] היא מטריצה שיש לה אפסים מתחת לאלכסון הראשי בk העמודות הראשונות.
- לוקחים את המטריצה ללא k השורות והעמודות הראשונות, ומקבלים מטריצה מסדר n-k על n-k. נקרא לה [math]\displaystyle{ A_{n-k} }[/math]
- מוצאים מטריצה [math]\displaystyle{ M_{n-k} }[/math] באותו אופן (מוצאים בסיס למרחב עצמי של [math]\displaystyle{ A_{n-k} }[/math], משלימים לבסיס של המרחב) , ומשלימים אותה למטריצה מגודל n על n באופן הבא [math]\displaystyle{ M_1=\begin{bmatrix}I_{k} & 0 \\ 0 & M_{n-k}\end{bmatrix} }[/math]
- מסתכלים על [math]\displaystyle{ M_1^{-1}M^{-1}AMM_1 }[/math]. למטריצה הזו יש אפסים מתחת לאלכסון הראשי בk+m העמודות הראשונות, כאשר m הוא המימד של המרחב העצמי בשלב השני.
- ממשיכים בתהליך עד שמקבלים מטריצה משולשית.
--ארז שיינר 15:32, 30 באוקטובר 2009 (UTC)
- אפשר לקחת בהתחלה את כל הוקטורים העצמיים ולהשלים אותם לבסיס, במקום רק את הוקטורים העצמיים של ערך עצמי אחד?
- ואז מה השלב הבא? זה לא ישלש את המטריצה בהכרח. מותר לעשות את זה, כי זה דומה ללקחת את הו"ע העצמיים של ע"ע אחד, ואז להשלים את הבסיס עם וקטורים עצמיים אחרים. אבל אני לא יודע אם זה יחסוך שלבים. שים לב שבאלגוריתם, כל פעם הוקטורים העצמיים הם ממרחב וקטורי ממימד קטן יותר. --ארז שיינר 18:43, 30 באוקטובר 2009 (UTC)
- האמת שחשבתי על זה, ויכול להיות שזה כן מקצר את האלגוריתם. מוזמנים לנסות --ארז שיינר 18:53, 30 באוקטובר 2009 (UTC)
- ואז מה השלב הבא? זה לא ישלש את המטריצה בהכרח. מותר לעשות את זה, כי זה דומה ללקחת את הו"ע העצמיים של ע"ע אחד, ואז להשלים את הבסיס עם וקטורים עצמיים אחרים. אבל אני לא יודע אם זה יחסוך שלבים. שים לב שבאלגוריתם, כל פעם הוקטורים העצמיים הם ממרחב וקטורי ממימד קטן יותר. --ארז שיינר 18:43, 30 באוקטובר 2009 (UTC)
יש לי שאלה
יש לי נקע בזרת ואני לא יכול לכתוב, השאלה היא האם אני יכול לבקש ממישהו בקורס (שאני מכיר) לכתוב לי את התשובות לשיעורים ואני יקריא לו? זה מותר? אם לא מה לעשות? אני לא רוצה שירד לי ציון... אשמח לתשובה בהקדם
- אני לא כל כך מבין את מהות השאלה. ככלל אנחנו לא בודקים את הכתב של התרגיל. אם התרגיל הוא שלך ומכיל תשובות שלך זה בסדר. אם מישהו אחר עשה בשבילך את התרגיל זה לא בסדר. פשוט :) --ארז שיינר 20:58, 30 באוקטובר 2009 (UTC)