כלל לופיטל

מתוך Math-Wiki

חזרה למשפטים באינפי


משפט: נניח כי [math]\displaystyle{ lim_{x\to a^+}f(x)=lim_{x\to a^+}g(x)=0 }[/math] ונניח עוד כי [math]\displaystyle{ f,g }[/math] גזירות בסביבה ימנית של a ומתקיים [math]\displaystyle{ lim_{x\to a^+}=\frac{f'(x)}{g'(x)}=L }[/math] אז מתקיים [math]\displaystyle{ lim_{x\to a^+}=\frac{f(x)}{g(x)}=L }[/math]

הוכחה: נוכל לבנות [math]\displaystyle{ \tilde{f},\tilde{g} }[/math] רציפות שמקיימות [math]\displaystyle{ \tilde{f}=\begin{cases} f\left(x\right) & x\neq a\\ 0 & x=a \end{cases} \tilde{g}=\begin{cases} g\left(x\right) & x\neq a\\ 0 & x=a \end{cases} }[/math] הגבול של מנתם בa יהיה זהה לגבול המקורי כי הוא נבדל ממנו רק בנקודה 1 לשם נוחות נמשיך לקרוא להם .f,g על פי משפט ערך הביניים של קושי עבור כל x בסביבה הימנית של a שבה f,g מוגדרות נוכל לבחור [math]\displaystyle{ a\lt c(x)\lt x }[/math] שמוגדרת בסביבה הימנית שמקיימת [math]\displaystyle{ \frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(c(x))}{g'(c(x))} }[/math] ולכן נקבל [math]\displaystyle{ \lim_{x\to a^{+}}\frac{f(x)}{g(x)}=\lim_{x\to a^{+}}\frac{f'(c(x))}{g'(c(x))}=\lim_{c\to a^{+}}\frac{f'(c)}{g'(c)} }[/math] כרצוי השיוויון האחרון נובע מכך ש [math]\displaystyle{ a\lt c(x)\lt x }[/math] וממשפט הסנדויץ