שיחה:88-133 אינפי 2 תשעב סמסטר ב/אינטגרלים
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
שאלות
תרגיל 1 שאלה 3
[math]\displaystyle{ \int{max(x,x^2)dx} }[/math] הבנתי שמדבור בפונקציה מפוצלת, אך לא מובן לי האם מצופה מאיתנו לבחור את המקסימום בין [math]\displaystyle{ x }[/math] ל [math]\displaystyle{ x^2 }[/math] בכל נקודה או המקסימום בין האינטרגל שלהם?
- פונקציה המקס בכל נקודה נותנת את המקסימום בין הערכים שהיא מקבלת. על פונקציה זו עושים אינטגרל --ארז שיינר
כדאי להוסיף
מצאתי את ההוכחה של התרגיל שהופיע בתרגול של מתן פתאל (ההוכחה שלי יצאה בלתי אפשרית מבחינת האורך, סתם עשיתי בה סיבוב והגעתי לאותה הדרך...) אז כדאי להוסיף אותה למערכי תרגול: http://www.math-wiki.com/index.php?title=%D7%9E%D7%A9%D7%AA%D7%9E%D7%A9:%D7%90%D7%95%D7%A8_%D7%A9%D7%97%D7%A3/133_-_%D7%94%D7%A8%D7%A6%D7%90%D7%94/15.3.11
(לכל מי שהוא לא מתן, זהו האינטגרל - [math]\displaystyle{ \sqrt {x^2+a^2} }[/math] )
- אתה יותר ממוזמן להוסיף את זה למערכי התרגול. תעשה קופי-פייסט למקור של הדף (באמצעות עריכה) --ארז שיינר
הוכחה שפונ' אינטג' בכל R
כשהפונ' לא רציפה בא0 נק', חייבים לעבוד עם (ההגדרה או אפסילונים)?
- באיזה הקשר?
שיטת ההצבה
היי, מובן לי כיצד להשתמש בשיטה אך לא מובן לי כיצד היא נובעת מכלל השרשרת: (f(g(x))'=f'g(x)+g'(x) אודה להסבר עד כמה שניתן מפורט במסגרת זו תודה :)
כלל שרשרת זה: [math]\displaystyle{ (f(g(x))'=f'(g(x))\cdot g'(x) }[/math].
ניתן לרשום את הנגזרת גם ככה: [math]\displaystyle{ \frac{d}{dx} g(x) }[/math] אם נציב g(x)=t אז יצא לנו [math]\displaystyle{ \frac{dt}{dx} }[/math].
ע"פ כלל השרשרת, בעצם מה שיוצא לנו זה:
[math]\displaystyle{ \frac{d}{dx} f(t)=\frac{d}{dt}f(t) \cdot \frac{d}{dx}t }[/math] ולכן אחרי העברת אגפים מה שיוצא לנו
[math]\displaystyle{ \frac{df(t)}{\frac{d}{dt}f(t) \cdot \frac{d}{dx}t }= dx }[/math].
אבל הביטוי באינטגרל הוא [math]\displaystyle{ \int f(g(x))dx }[/math] ולכן מציבים: [math]\displaystyle{ g(x)=t,dx=\frac{df(t)}{\frac{d}{dt}f(t) \cdot \frac{d}{dx}t } }[/math]
מקווה שעזרתי :)
אינטגרל לנגזרת
אין משפט שכל נגזרת היא אינטגרבילית בתחום הגדרתה, נכון?
- לא, יש נגזרות שאינן חסומות בכלל. --ארז שיינר
שכחתי נגזרות טיפה....
מה זה הנגזרת של ARCTAN והנגזרת של ARCSIN ומה הנגזרת של ההופכי טנקס
- יש את וולפרםאלפא, יש את ויקיפדיה...
עוצמות
מה עוצמת קבוצת כל הפונ' הממשיות:
1)האינטגרביליות-רימן?
2)הרציפות?
3)רבמ"ש?
4)חסומות?
וכו' - אין לי יכולת אפילו לגשת לבעיה. (אבל אינטואיטיבית האינטגרביליות והחסומות תהיינה כנראה שתיים בחזקת אלף)
- מישהו?
- לא יודע --ארז שיינר
לגבי רציפות ורבמ"ש התשובה היא [math]\displaystyle{ \aleph }[/math].
אני מאמין שחסומות זה [math]\displaystyle{ 2^{\aleph} }[/math].
ולגבי האינטגרביליות רימן באמת שאין לי שמץ של מושג.
- תודה, אופיר. תוכל להסביר? מפתיע שאין באינטרנט תשובה לשאלה כה בסיסית.
- אני אסביר לך מחר, אבל זה כולל את קש"ב וחשבון עוצמות.
atan
[math]\displaystyle{ \int_{0}^{-1}\frac{1}{1+x^2}dx=arctan(-1)=\left\{\begin{matrix} -\frac{\pi}{4} \\ \frac{3\pi}{4} \end{matrix}\right. }[/math]
וולפראם אומר שהראשון. זה בגלל האי-רציפות באמצע? למה?
- הסבר: [math]\displaystyle{ \int_{0}^{-1}\frac{1}{1+x^2}dx=-\int_{-1}^0\frac{1}{1+x^2}dx=-arctan1 }[/math] אבל מצד שני מתקיים [math]\displaystyle{ tan(-\frac{\pi}{4})=tan(\frac{3 \pi}{4})=-1 }[/math]
- התשובה הנכונה היא: [math]\displaystyle{ -\frac{\pi}{4} }[/math] כי התמונה של הארקטנגנס היא [math]\displaystyle{ (-\frac{\pi}{2},\frac{\pi}{2}) }[/math]
- לב, זה לא עזר. השורה הראשונה שגוייה, השורה השנייה היא לא נימוק. מישהו?
- באיזה תחום זו הנגזרת של arctan? --ארז שיינר
- אם נגדיר את פונק' ה[math]\displaystyle{ arctan }[/math] כך שהיא תחזיר ערכים במרווח [math]\displaystyle{ (\pi/2, 3 \pi/2) }[/math], האם אתה טוען שהנגזרת שלה כבר לא תהיה [math]\displaystyle{ \frac{1}{1+x^2} }[/math]?
- לא חשוב, הסתדרתי לבד -- בכל תחום שנבחר, הארקטנגנס של 0 גם כן ישתנה בהתאם, כמובן (במקרה שציינתי הוא [math]\displaystyle{ \pi }[/math]), ולכן טריוויאלי להראות שתמיד תצא אותה תשובה, ללא תלות בהגדרתנו את ה[math]\displaystyle{ arctan }[/math]. (נובע ישירות מהיותה של טנגנס מחזורית)
אינטגרל לנגזרת 2
כל נגזרת חסומה היא אינטגרבילית בתחום הגדרתה?
- האמת שאני לא בטוח... השאלה היא אם ניתן ליצור נגזרת עם מספיק נקודות אי רציפות. --ארז שיינר
נפח סיבוב
כדי לחשב נפח סיבוב פונ׳ חח״ע סביב ציר ה-y, צריך למצוא את הנפח של [math]\displaystyle{ y^{-1} }[/math] סביב ציר x?
- כן --ארז שיינר
תרגיל 3 שאלה 5
את איזה מהתנאים לא מקיימת הפונ' 0?
- אופס, שכחתי נתון (: תודה --ארז שיינר
תרגיל 3 שאלה 1
סעיף ב' הפונקציה גזירה ברציפות או פשוט גזירה?
- הוספתי ברציפות, אמנם אני לא בטוח שזה נחוץ, מטרת התרגיל אינה להתעסק באינטגרביליות של הנגזרת. --ארז שיינר
- פשוט בשביל להיות בטוח שהאורך קיים(זאת אומרת פונקציית האורך אינטגרבילית)
אפשר הסבר מה זה פונקציה רציונלית כאילו
מה זה פונקציה שהיא לא רציונלית
- קראת את הדף על הצבות אוניברסאליות? זה מוגדר שם באופן מדוייק. --ארז שיינר
בקשר להצבות באינטגרלים לא מסוימיים
לעיתים די קרובות מציבים באינטגרלים לא מסוימיים דברים כמו x=cos(t) אבל אני לא מבין איך זה נכון הרי cos(t) הוא חסום וx לא כמובן שזו הייתה רק דוגמא אז באופן יותר כללי, למה מותר להציב באינטגרל לא מסוים משהו חסום במקום משהו לא חסום? ובאופן כללי האם כל ההצבות חוקיות באינטגרלים לא מסוימים?
- שאלה טובה, מה שנקרא. מותר לבצע הצבות כאלה רק בתחומים בהם פונקציית ההצבה הפיכה (הרי משתמשים בנגזרת של הופכית). פרקטית, ייתכן וההצבה חוקית רק בתחום מסויים, אבל פונקציה התוצאה הינה פונקציה קדומה בכל התחום. כלומר, מספיק לגזור את התוצאה ולראות שהיא אכן קדומה, הדרך "לנחש" אותה פחות רלוונטית. זו גם הסיבה שאנחנו פחות שמים דגש על הנושא הזה, המטרה העיקרית של אינטגרלים היא למצוא פונקציה קדומה. --ארז שיינר
תרגיל 1 שאלה 2
לא הבנתי מה צריך להתקיים בעניין משפט ערך הביניים בהקשר לאינטגרלים? אמרנו את זה בתרגול? תודה.
- לא למדנו על תכונת ערך הביניים של הנגזרת, זה נשאר בפתרונות משנים קודמות --ארז שיינר
תרגיל 2 שאלה 2 א
בפתרונות לא הבנתי איך ניתן לקפוץ מכך שקיים i שמקיים את מה שכתוב שם, לכך שזה סכום מ i עד 2 בחזקת n? הרי אולי קיים k שלא מקיים את זה ואז זה לא נכון? מקוה שהשאלה מובנת... תודה.
- זה בעייה בשפה העברית. כאשר הוא כתב "קיים" הוא למעשה התכוון "מתקיים". זה נכון לכל i --ארז שיינר
הסבר סימון- הצבות אוניברסליות
שלום,
אפשר הסבר על משמעות הסימון בדף "הצבות אוניברסליות"? הסימון שלא ברור לי הוא לדוג': אינטגרל של R x , שורש a^2-x^2 שזאת ההצבה לx=asint (סורי טרם למדתי לכתוב בlatex) אפשר הסבר לסימון? איך זה נראה בפועל אינטגרל של מה? יש לי היכרות עם מקרים פרטיים של ההצבה ואשמח להבין את הסימון הכללי. תודה.
מצ"ב קובץ הצבות אוניברסליות הנדון: http://math-wiki.com/images/e/e5/09Infi2Universal.pdf
- הסימון [math]\displaystyle{ R(x,y) }[/math] מכוון לפונקציה רציונאלית כפי שמוסבר בראש הדף. דוגמא:
- [math]\displaystyle{ R(x,sinx) = \frac{x^7sin^4x+xsinx+5}{sin^3x-x^3} }[/math] --ארז שיינר
מוזרות
[math]\displaystyle{ \frac{-arctan(1-\sqrt2 tan(x))+arctan(1+\sqrt2 tan(x))}{\sqrt2} }[/math] ,[math]\displaystyle{ \frac{arctan(\frac{tan(2x)}{\sqrt2})}{\sqrt2} }[/math] הן קדומות של [math]\displaystyle{ \frac{1}{cos^4(x)+sin^4(x)} }[/math] אבל הן לא נבדלות בקבוע. איך זה ייתכן? תודה.
- מי אמר שהן לא נבדלות בקבוע? בגלל שיש להן הצגה שונה? האם [math]\displaystyle{ cos^2+sin^2 }[/math] לא נבדל בקבוע מקבוע? תציד במחשבון... --ארז שיינר
- בדקתי וראיתי שהם חופפים בתחומים מסוימים אבל לא נבדלים בקבוע.
- הפונקציות רציפות למקוטעין. ייתכן שעל כל קטע רציפות הן נבדלות בקבוע? הרי ניתן להזיז את הקדומה בכל קטע, הרי אילו פונקציות קדומות רק בקטעי הרציפות --ארז שיינר
תרגיל 3 של השנה שעברה
http://math-wiki.com/images/e/e6/09Infi2sol3.pdf
1)איך המילה תרפיה קשורה לסוף פתרון 1א? הם מתכוונים לכך שהשרטוט הוא מעין ריפוי בעיסוק?
2) לדעתי x=-1 היא מקסימום, בניגוד למה שרשמו.
- אני לא רואה את הדברים האלה בשאלה 1a יכול להיות שהתבלבלת או שאני מפספס? בכל אופן, תרפיה בתרשים היא אכן סוג של ריפוי בעיסוק. אולם זה יותר כמו העיסוק של סריגת סוודר כאשר קר לך, מאשר סריגת סוודר כאשר אתה כועס על מישהו --ארז שיינר
- 2א*.
- כן, זו אכן נקודת מקסימום ולא מינימום, ובנוסף אפס הינה נקודת מינימום. --ארז שיינר
שאלות לתרגיל 4
א. האם בשאלה אחת מותר להשתמש בעובדה, שהקו הקצר ביותר שמחבר שתי נקודות הוא קו ישר?
ב. לגבי שאלה 5: הפונקציה רציפה על כל הממשיים (או לפחות בקרן החיובית), נכון?
השאלה השנייה באמת דבילית, אנא התעלם ממנה ><
- א. לא, אי אפשר להשתמש בתכונה הגיאומטרית הזו, אני רוצה פתרון באמצעות אינטגרלים. באותה מידה הייתי יכול לנסח את השאלה עם נוסחאת האינטגרל של העקומה, אבל בחרתי להתחכם.
- ב. בשמחה --ארז שיינר
השערה נחמדה
תהי f פונ' חסומה בקטע [math]\displaystyle{ [a,b] }[/math]. אזי היא אינטגרבילית-רימן בקטע אםם קיים [math]\displaystyle{ I \in \mathbb{R} }[/math] כך שלכל [math]\displaystyle{ \epsilon \gt 0 }[/math] קיימת [math]\displaystyle{ \delta \gt 0 }[/math] כך שלכל חלוקה אינסופית [math]\displaystyle{ T=\left \{ x _i \right \}_{i=0}^\infty
}[/math] של [math]\displaystyle{ [a,b] }[/math] עם פרמטר [math]\displaystyle{ \lambda (T)\lt \delta }[/math], לכל בחירת נקודות [math]\displaystyle{ \left \{ \xi _i \right \}_{i=0}^\infty }[/math] כך ש [math]\displaystyle{ \xi_i \in \Delta x_i }[/math], מתקיים שאם הסכום מהצורה [math]\displaystyle{ \sum_{i=1}^{\infty} f(\xi _i)\Delta x_i }[/math] מתכנס, אז
הוא
מרחקו מ-I קטן מאפסילון.
- הערה: קבוצה [math]\displaystyle{ T=\left \{ x _i \right \}_{i=0}^\infty \subseteq [a,b] }[/math] תיקרא חלוקה אינסופית של הקטע [math]\displaystyle{ [a,b] }[/math] אם מתקיים [math]\displaystyle{ x_i \lt x_{i+1} \; \wedge \; x_0=a \; \lim_{n \to \infty }x_n=b }[/math].
- וכמובן, [math]\displaystyle{ \lambda (T) \overset{\underset{\mathrm{def}}{}}{=}max\left \{ \Delta x_i \right \} }[/math]
- תסתכל על פונקציה קבועה זו הפרכה. אולי התנאי היותר מתאים הוא שהטור שהצעת פשוט מתכנס למספר כלשהו. ואז זה יותר מתקרב בעצם להגדרה של אינטגרל רימן רגיל.
- האר עיניי; אני לא רואה מהי ההפרכה. הרי אגף ימין ברור, ולאגף שמאל תמיד נקבל [math]\displaystyle{ \sum_{i=1}^{\infty} f(\xi _i)\Delta x_i=\sum_{i=1}^{\infty} c\Delta x_i=c\sum_{i=1}^{\infty} \Delta x_i=c(b-a) }[/math] שמרחקו מ-I הוא זהותית 0.
- ההפרכה הייתה כשאמרת שהסכום קטן מאפסילון, כי אחרת זו לא ממש הפרכה. זה משהו שנורא דומה לסכומי רימן רגילים, כאילו גבול של סכומי רימן כאלו.
- התכוונתי למה שכתוב עכשיו -- כדי להכליל ישירות את ההגדרה. שאלתי את ד"ר שיין לפני כמה שיעורים, והוא פשוט אמר לי לנסות.
- ההפרכה הייתה כשאמרת שהסכום קטן מאפסילון, כי אחרת זו לא ממש הפרכה. זה משהו שנורא דומה לסכומי רימן רגילים, כאילו גבול של סכומי רימן כאלו.
הוקפץ לפי בקשת ארז. (זאת בטח תהיה הוכחה ישירה, אני פשוט לא מצליח את הפרטים)
- אם הפונקציה אינטגרבילית רימן, ניקח את מספר סופי של נקודות מהחלוקה כך שהקטע הנותר כפול החסם של הפונקציה קטן מאפסילון חלקי שתיים. לפי האינטגרביליות החלוקה הסופית קרובה עד כדאי אפסילון חלקי שתיים ולכן סכום הטור צריך להיות האינטגרל.
- אם היא אינה אינטגרבילית, יש לה אינטגרל עליון ותחתון שונים. אלה ישרו טורים המתכנסים לסכומים שונים באופן דומה.
- נראה לי... --ארז שיינר