מכינה למחלקת מתמטיקה/מערכי שיעור/14

מתוך Math-Wiki

שיטות הוכחה

הוכחה בשלילה

הוכחה בשלילה מבוססת על הטאוטולוגיה [math]\displaystyle{ (\sim p \rightarrow F)\rightarrow p }[/math]. בהוכחה בשלילה אנו מניחים את השלילה של מה שצריך להוכיח ומגיעים לסתירה.

שימו לב שאנו לא שוללים את הנתון אלא את הצ"ל.


דוגמא:

תרגיל תהיינה A,B קבוצות המקיימות [math]\displaystyle{ A\backslash B=B\backslash A }[/math]. הוכח כי [math]\displaystyle{ A=B }[/math]


הוכחה בשלילה:


נתון: [math]\displaystyle{ A\backslash B=B\backslash A }[/math]


צ"ל: [math]\displaystyle{ A=B }[/math]


נניח בשלילה כי [math]\displaystyle{ A\neq B }[/math].


לכן קיים [math]\displaystyle{ a\in A }[/math] כך ש [math]\displaystyle{ a\notin B }[/math] (או ההפך)


לכן לפי ההגדרה [math]\displaystyle{ a\in A\backslash B }[/math] אבל [math]\displaystyle{ a\notin B\backslash A }[/math] (או ההפך)


לכן [math]\displaystyle{ A\backslash B\neq B\backslash A }[/math]


בסתירה.



דוגמא. תהיינה A,B קבוצות כך ש [math]\displaystyle{ (A\backslash B)\cup B = (A\cup B)\backslash B }[/math] הוכח כי [math]\displaystyle{ A\cap B = \phi }[/math]