88-133 אינפי 2 תשעג סמסטר ב/תרגילים/תרגיל 6
1
חשב אילו מן האינטגרלים הבאים מתכנס
א
[math]\displaystyle{ \int_1^\infty e^{-\ln^2(x)}dx }[/math]
ב
[math]\displaystyle{ \int_0^\infty x^2\sin(x^4)dx }[/math]
ג
[math]\displaystyle{ \int_1^\infty\frac{\cos(x)}{x} }[/math]
ד
[math]\displaystyle{ \int_1^\infty\frac{|\cos(x)|}{x} }[/math]
ה
[math]\displaystyle{ \int_1^\infty\frac{\cos^2(x)}{x} }[/math]
ו
[math]\displaystyle{ \int_1^\infty\frac{x-\arctan(x)}{x(1+x^2)\arctan(x)}dx }[/math]
2
חשב לאילו ערכים של הפרמטר האינטגרל הבא מתכנס
[math]\displaystyle{ \int_1^\infty\frac{\sin^2(x)}{x^\alpha}dx }[/math]
3
תהי f פונקציה יורדת כך ש [math]\displaystyle{ \int_0^\infty f(x)dx }[/math] מתכנס
א
הוכח כי [math]\displaystyle{ \lim_{x\rightarrow\infty}f(x)=0 }[/math]
ב
הראה כי הטענה לא נכונה אם לא מניחים כי [math]\displaystyle{ f }[/math] יורדת.
4
א
נתונה f חיובית ורציפה, ונתון כי [math]\displaystyle{ \int_0^\infty f(x)dx=\infty }[/math]. הוכח כי [math]\displaystyle{ \int_1^\infty\frac{f(x)}{\int_0^x f(t)dt}dx=\infty }[/math]
ב
הראה כי הטענה לא נכונה ללא ההנחה ש [math]\displaystyle{ \int_0^\infty f(x)dx=\infty }[/math].
5
א
הראה כי הפונקציה [math]\displaystyle{ \frac{1}{1+[x]^2} }[/math] אינטגרבילית מקומית ב [math]\displaystyle{ [1,\infty) }[/math]
ב
האם האינטגרל [math]\displaystyle{ \int_1^\infty \frac{1}{1+[x]^2} \mathrm{d}x }[/math]
מתכנס?