לינארית 1 לתיכוניסטים תש"ע - שאלות ותשובות

מתוך Math-Wiki

[math]\displaystyle{ \dim W+U= \dim W + \dim U - \dim W\cap U }[/math]

הוראות

כאן המקום לשאול שאלות. כל שעליכם לעשות הוא ללחוץ על [עריכה] (משמאל לכותרת "שאלות"), להוסיף בתחילת הדף את השורה הבאה:

== כותרת לשאלה ==

לכתוב מתחתיה את שאלתכם, וללחוץ על שמירה למטה מימין

הודעה חשובה !!! - יש להגיש את התרגילים הנוספים (13 , ו 14 כרשות למי שמגיש ) עד ,וכולל , 16.9.2010 ! למשל לתא הבודקת הילה הלוי בכר , או לתומר ביום רביעי או לניר ביום חמישי - בתרגולי החזרה . אנא הודיעו למי שאתם יודעים שלא יגיע לתרגולים אלו . תודה:)

ארכיון

ארכיון 1 - תרגיל 1

ארכיון 2 - תרגיל 2

ארכיון 3 - בוחן + תרגיל 3

ארכיון 4 - תרגיל 3

ארכיון 5 - תרגיל 4

שאלות

תרגיל 2.8

מה הכוונה ב(א) שכתוב [math]\displaystyle{ T1 + T2 = Iv }[/math] ? כלומר מה הכוונה בחיבור העתקות ליניאריות? תודה רבה... XD

מרחב עמודות

איך מחשבים את הדרגה של A, כלומר את מספר האיברים בבסיס של מרחב העמודות של A? איך מוצאים את הבסיס? מהי הדרגה של מטריצת האפס? למה? תודה.

תשובה

  • הדרגה של המטריצה היא מספר השורות השונות מאפס בצורה המדורגת שלה.
  • אפשר למצוא בסיס למרחב העמודות על ידי:
    • שחלוף המטריצה A
    • דירוג המטריצה המשוחלפת
    • שורות הצורה המדורגת של המטריצה המשוחלפת השונות מאפס, מהוות בסיס למרחב העמודות (כאשר מסתכלים עליהן כעמודות כמובן)
  • מטריצה האפס היא בצורה מדורגת, אין שורות שונות מאפס ולכן הדרגה היא אפס.

תרגיל 11.2ב

מהי המטריצה A|b?

המטריצה A שהוסיפו לה מימין את העמודה b.

סכום ישר

לא הבנתי עד הסוף את הנושא של הסכום הישר! אתה יכול לתת דוגמא?

גם היתה דוג' בהרצאה שלא ממש הבנתי,

V=R^3 u=sp{(1,1,1)}, w={(x1,x2,x3)|x1+x2+x3=0, x1,x2,x3 in R טענה- v=u+w

צ"ל :

1. U+W מוכל בV.

2.V תת מרחב של U+W

3.U חיתוך W שווה 0.

למה צריך להוכיח את 2??

תשובה

הביטוי [math]\displaystyle{ V=U\oplus W }[/math] אומר את שני הדברים הבאים לפי הגדרה:

א. V=U+W

ב. [math]\displaystyle{ U\cap W = \{0\} }[/math]


על מנת להוכיח את א, צריך להוכיח את 1+2 שלך (זו סה"כ הכלה דו כיוונית שמוכיחה שיוויון).

ב' הוא בדיוק 3 שלך.