משתמש:אור שחף/133 - תרגול/10.4.11

מתוך Math-Wiki
< משתמש:אור שחף‏ | 133 - תרגול
גרסה מ־14:18, 14 במאי 2015 מאת גיא (שיחה | תרומות) (←‏פתרון)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

האינטגרל המסויים (המשך)

הוכחנו בהרצאה שאם f גזירה ב-[math]\displaystyle{ (a,b) }[/math] ו-c נקודה כלשהי בקטע אז מתקיים [math]\displaystyle{ \frac{\mathrm{d}}{\mathrm{d}x}\int\limits_c^x f\mathrm{d}t=f(x) }[/math].

דוגמה 1

גזור את הפונקציות הבאות:

  1. [math]\displaystyle{ I(x)=\int\limits_1^x e^{t^2}\mathrm dt }[/math]:

    פתרון

    ברור כי [math]\displaystyle{ e^{t^2} }[/math] פונקציה גזירה, ולכן [math]\displaystyle{ \frac{\mathrm dI(x)}{\mathrm dx}=e^{t^2} }[/math].

  2. [math]\displaystyle{ I(x)=\int\limits_1^{x^3}\frac{\ln(t)}{t^2}\mathrm dt }[/math]:

    פתרון

    [math]\displaystyle{ \frac{\ln(t)}{t^2} }[/math] בוודאי גזירה בתחום. נסמן [math]\displaystyle{ y=x^3 }[/math] ולכן [math]\displaystyle{ \frac{\mathrm dI(x)}{\mathrm dx}=\frac{\mathrm dI(x)}{\mathrm dy}\cdot\frac{\mathrm dy}{\mathrm dx}=\frac{\ln(y)}{y^2}\cdot3x^2=\frac{\ln(x^3)}{x^6}\cdot3x^2=9\frac{\ln(x)}{x^4} }[/math]. [math]\displaystyle{ \blacksquare }[/math]

הערה: במקרה של [math]\displaystyle{ \frac{\mathrm{d}}{\mathrm{d}x}\int\limits_{g(x)}^{h(x)} f\mathrm{d}t }[/math] נפרק את האינטגרל לסכום [math]\displaystyle{ \int\limits_c^{h(x)} f\mathrm{d}t+\int\limits_{g(x)}^c f\mathrm{d}t }[/math].

אינטגרלים לא אמיתיים מסוג I

לפחות אחד מגבולות האינטגרציה אינסופי. נסמן [math]\displaystyle{ \int\limits_a^\infty f=\lim_{b\to\infty}\int\limits_a^b f }[/math] ובאופן דומה [math]\displaystyle{ \int\limits_{-\infty}^b f=\lim_{a\to-\infty}\int\limits_a^b f }[/math] וכן [math]\displaystyle{ \int\limits_{-\infty}^\infty f=\int\limits_{-\infty}^c f+\int\limits_c^\infty f }[/math] עבור c כך ששני האינטגרלים יהיו קיימים.

כלל ידוע: [math]\displaystyle{ \int\limits_a^\infty\frac{\mathrm dx}{x^\alpha} }[/math] מתכנס אם"ם [math]\displaystyle{ \alpha\gt 1 }[/math].

דוגמה 2

חשבו את [math]\displaystyle{ \int\limits_1^\infty\cos }[/math], אם קיים.

פתרון

[math]\displaystyle{ \int=\lim_{b\to\infty}[\sin(x)]_{x=1}^b=\lim_{b\to\infty}\sin(b)-\sin(1)\not\in\mathbb R\cup\{\pm\infty\} }[/math], כלומר מתבדר.

דוגמה 3

חשבו את [math]\displaystyle{ \int\limits_{-\infty}^\infty\frac{\arctan(x)}{1+x^2}\mathrm dx }[/math].

פתרון

נציב [math]\displaystyle{ y=\arctan(x) }[/math] ולכן [math]\displaystyle{ \mathrm dy=\frac{\mathrm dx}{1+x^2} }[/math]. מכאן נובע ש-

[math]\displaystyle{ \begin{align}\int&=\lim_{R\to\infty}\int\limits_{\arctan(-R)}^{\arctan(0)} y\mathrm dy+\lim_{R\to\infty}\int\limits_{\arctan(0)}^{\arctan(R)} y\mathrm dy\\&=\left[\frac{y^2}2\right]_{y=-\frac\pi2}^0+\left[\frac{y^2}2\right]_{y=0}^\frac\pi2\\&=-\frac{\pi^2}8+\frac{\pi^2}8\\&=0\end{align} }[/math]

[math]\displaystyle{ \blacksquare }[/math]

דוגמה 4

חשבו [math]\displaystyle{ \int\limits_{-\infty}^\infty xe^x\mathrm dx }[/math].

פתרון

[math]\displaystyle{ \int=\lim_{R\to\infty}\left[xe^x\right]_{x=-R}^R-\int\limits_{-R}^R e^x\mathrm dx=\lim_{R\to\infty}Re^R-\left(-Re^{-R}\right)-e^R+e^{-R}=\infty }[/math]. [math]\displaystyle{ \blacksquare }[/math]

מבחני התכנסות

מבחן ההשוואה

[math]\displaystyle{ 0\le f(x)\le g(x) }[/math] אזי אם [math]\displaystyle{ \int\limits_a^\infty g }[/math] מתכנס אז [math]\displaystyle{ \int\limits_a^\infty f }[/math] מתכנס.

דוגמה 5

קבעו התכנסות של [math]\displaystyle{ \int\limits_1^\infty x^{-x}\mathrm dx }[/math].

פתרון

נבדוק מתי [math]\displaystyle{ x^{-x}\le\frac1{x^2} }[/math]: [math]\displaystyle{ x^{-x+2}\le1\Longleftarrow x\ge2 }[/math]. לכן נרשום [math]\displaystyle{ \int=\underbrace{\int\limits_1^2 x^{-x}\mathrm dx}_I+\underbrace{\int\limits_2^\infty x^{-x}\mathrm dx}_{II} }[/math]. האינטגרל I בוודאי מתכנס, כי גבולות האינטגרציה סופיים והפונקציה רציפה בתחום. נותר להראות ש-II מתכנס: כפי שכבר הראנו, בתחום הזה [math]\displaystyle{ x^{-x}\le\frac1{x^2} }[/math] ולכן מספיק לבדוק התכנסות האינטגרל [math]\displaystyle{ \int\limits_2^\infty\frac{\mathrm dx}{x^2} }[/math], שכידוע מתכנס. [math]\displaystyle{ \blacksquare }[/math]

דוגמה 6

קבעו התכנסות האינטגרל (האמיתי) [math]\displaystyle{ \int\limits_0^1 x^{-x}\mathrm dx }[/math].

פתרון

ברור שפרט לנקודה 0 האינטגרנד מוגדר בקטע. נסתכל על הגבול כאשר [math]\displaystyle{ x\to0^+ }[/math]: [math]\displaystyle{ \lim_{x\to0^+} x^{-x}=\lim_{x\to0^+} e^{-x\ln(x)}=\lim_{x\to0^+}e^{-\frac{\ln(x)}{1/x}}=\lim_{x\to0^+}e^{-\frac{1/x}{-1/x^2}}=\lim_{x\to0^+}e^x=1 }[/math]. לכן נגדיר [math]\displaystyle{ g(x)=\begin{cases}x^{-x}&0\lt x\le1\\1&x=0\end{cases} }[/math]. פונקציה זו רציפה בקטע הסגור [math]\displaystyle{ [0,1] }[/math] ולכן ברור שהאינטגרל שלה בקטע מתכנס. מכיוון שהיא שונה מהאינטגרנד המקורי במספר סופי של נקודות גם [math]\displaystyle{ \int\limits_0^1 x^{-x}\mathrm dx }[/math] מתכנס. [math]\displaystyle{ \blacksquare }[/math]

דוגמה 7

קבעו התכנסות של [math]\displaystyle{ \int\limits_1^\infty\frac{\arctan(x)}x\mathrm dx }[/math].

פתרון

בקטע הנ"ל arctan היא פונקציה עולה. לכן אם נכוון להתבדרות נשים לב כי [math]\displaystyle{ \frac\pi4=\arctan(1)\le\arctan(x) }[/math] ולכן [math]\displaystyle{ \frac\pi4\cdot\frac1x\frac{\arctan(x)}x }[/math]. אבל [math]\displaystyle{ \frac\pi4\int\limits_1^\infty \frac{\mathrm dx}x }[/math] מתבדר ולכן כך גם האינטגרל הנתון. [math]\displaystyle{ \blacksquare }[/math]

מבחן ההשוואה הגבולי

נתון [math]\displaystyle{ \lim_{x\to\infty}\frac{f(x)}{g(x)}=L }[/math] כאשר f,g פונקציות אי-שליליות.

  • אם [math]\displaystyle{ 0\lt L\lt \infty }[/math] אז [math]\displaystyle{ \int f }[/math] ו-[math]\displaystyle{ \int g }[/math] מתכנסים ומתבדרים יחדיו.
  • אם [math]\displaystyle{ L=0 }[/math] אז התכנסות [math]\displaystyle{ \int g }[/math] גוררת התכנסות [math]\displaystyle{ \int f }[/math].
  • אם [math]\displaystyle{ L=\infty }[/math] אז התכנסות [math]\displaystyle{ \int f }[/math] גוררת התכנסות [math]\displaystyle{ \int g }[/math].

דוגמה 8

קבעו התכנסות של [math]\displaystyle{ \int\limits_1^\infty\frac{\arctan(x)}{x^2}\mathrm dx }[/math].

פתרון

ידוע כי [math]\displaystyle{ \int\limits_1^\infty\frac{\mathrm dx}{x^2} }[/math] מתכנס. הגבול [math]\displaystyle{ \lim_{x\to\infty}\frac{\;\frac{\arctan(x)}{x^2}\;}{\frac{1}{x^2}}=\lim_{x\to\infty}\arctan(x)=\frac\pi2\lt \infty }[/math] קיים ולכן [math]\displaystyle{ \int\limits_1^\infty\frac{\arctan(x)}{x^2}\mathrm dx }[/math] מתכנס. [math]\displaystyle{ \blacksquare }[/math]