כלל לופיטל

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.


כלל לופיטל

תהיינה שתי פונקציות f,g. ותהי נקודה [math]\displaystyle{ x_0\in\mathbb{R} }[/math] או [math]\displaystyle{ x_0=\pm\infty }[/math] כך ש

[math]\displaystyle{ \lim_{x\rightarrow x_0}f(x)=L }[/math]
[math]\displaystyle{ \lim_{x\rightarrow x_0}g(x)=M }[/math]

נראה כיצד ניתן להעזר בכלל לופיטל על מנת לחשב גבולות במקרים בהם משפטי האריתמטיקה הרגילים נכשלים.

מקרה ראשון [math]\displaystyle{ \frac{0}{0} }[/math] או [math]\displaystyle{ \frac{\infty}{\infty} }[/math]

נניח [math]\displaystyle{ M=L=0 }[/math] או [math]\displaystyle{ M=L=\pm\infty }[/math]

אזי אם הגבול [math]\displaystyle{ \lim_{x\rightarrow x_0}\frac{f'}{g'} }[/math] קיים, הוא שווה לגבול [math]\displaystyle{ \lim_{x\rightarrow x_0}\frac{f}{g} }[/math]

דוגמא 1

חשבו את הגבול [math]\displaystyle{ \lim_{x\rightarrow \infty} \frac{ln(x)}{x} }[/math].

זהו מקרה של [math]\displaystyle{ \frac{\infty}{\infty} }[/math]. נגזור את המונה והמכנה בנפרד ונקבל

[math]\displaystyle{ \lim_{x\rightarrow \infty} \frac{ln(x)}{x} = \lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{1} = \lim_{x\rightarrow \infty} \frac{1}{x} = 0 }[/math]

דוגמא 2

חשבו את הגבול [math]\displaystyle{ \lim_{x\rightarrow 0} \frac{ln(1+x)}{x} }[/math].


זהו מקרה של [math]\displaystyle{ \frac{0}{0} }[/math]. נגזור את המונה והמכנה בנפרד ונקבל

[math]\displaystyle{ \lim_{x\rightarrow 0} \frac{ln(1+x)}{x} = \lim_{x\rightarrow 0} \frac{\frac{1}{1+x}}{1}=1 }[/math]

דוגמא 3

חשבו את הגבול [math]\displaystyle{ \lim_{x\rightarrow \frac{\pi}{2}} \frac{cos(x)}{x-\frac{\pi}{2}} }[/math].

זהו מקרה של [math]\displaystyle{ \frac{0}{0} }[/math]. נגזור את המונה והמכנה בנפרד ונקבל

[math]\displaystyle{ \lim_{x\rightarrow \frac{\pi}{2}} \frac{cos(x)}{x-\frac{\pi}{2}}=\lim_{x\rightarrow \frac{\pi}{2}} \frac{-sin(x)}{1}=-1 }[/math]


מקרה שני [math]\displaystyle{ 0\cdot \infty }[/math]

נניח [math]\displaystyle{ L=0 }[/math], [math]\displaystyle{ M=\infty }[/math] ועלינו לחשב את הגבול [math]\displaystyle{ \lim_{x\rightarrow x_0}f\cdot g }[/math].

במקרה זה, אנו מעבירים את הביטוי לצורה של שבר מהמקרה הראשון.

דוגמא 4

חשבו את הגבול [math]\displaystyle{ \lim_{x\rightarrow 0}xln(x) }[/math].

זהו מקרה של [math]\displaystyle{ -\infty\cdot 0 }[/math]. נעביר את הביטוי לצורה של שבר (באמצעות כלל האוזן), ונפעיל את כלל לופיטל:

[math]\displaystyle{ \lim_{x\rightarrow 0}xln(x) = \lim_{x\rightarrow 0}\frac{ln(x)}{\frac{1}{x}}= }[/math]

נגזור מונה ומכנה ונקבל

[math]\displaystyle{ = \lim_{x\rightarrow 0}\frac{\frac{1}{x}}{-\frac{1}{x^2}}=\lim_{x\rightarrow 0}-x = 0 }[/math]

שימו לב: כלל לופיטל לא מוכרח להצליח. למשל במקרה זה, אם היינו מעבירים את הלוגריתם למכנה בתרגיל זה ומפעילים כלל לופיטל, לא היינו מתקדמים. נסו ותהנו.


דוגמא 5

חשבו את הגבול [math]\displaystyle{ \lim_{x\rightarrow \infty}e^xsin\big(\frac{1}{x}\big) }[/math].

זהו מקרה של [math]\displaystyle{ \infty\cdot 0 }[/math]. נעביר את הביטוי לצורה של שבר, ונפעיל את כלל לופיטל:

[math]\displaystyle{ \lim_{x\rightarrow \infty}e^xsin\big(\frac{1}{x}\big) = \lim_{x\rightarrow \infty}\frac{sin\big(\frac{1}{x}\big)}{e^{-x}}= }[/math]

נגזור מונה ומכנה ונקבל

[math]\displaystyle{ = \lim_{x\rightarrow \infty}\frac{\frac{-1}{x^2}cos\big(\frac{1}{x}\big)}{-e^{-x}}. }[/math]


כעת, אין אנו רוצים לגזור ביטויים מסובכים. אנו יודעים כי [math]\displaystyle{ \lim_{x\rightarrow \infty}cos\big(\frac{1}{x}\big)=1 }[/math], לכן נותר רק לחשב את הגבול

[math]\displaystyle{ \lim_{x\rightarrow \infty}\frac{e^x}{x^2} }[/math]

זהו מקרה של [math]\displaystyle{ \frac{\infty}{\infty} }[/math], לכן נפעיל כלל לופיטל (פעמיים):

[math]\displaystyle{ \lim_{x\rightarrow \infty}\frac{e^x}{x^2}= \lim_{x\rightarrow \infty}\frac{e^x}{2x}=\lim_{x\rightarrow \infty}\frac{e^x}{2}=\infty }[/math]

אם נחבר את כל התוצאות יחדיו, נקבל כי

[math]\displaystyle{ \lim_{x\rightarrow \infty}e^xsin\big(\frac{1}{x}\big)=\infty }[/math]

מקרה שלישי [math]\displaystyle{ 0^0 }[/math] או [math]\displaystyle{ 1^\infty }[/math] או [math]\displaystyle{ \infty^0 }[/math]

במקרה זה עלינו לחשב את הגבול [math]\displaystyle{ \lim_{x\rightarrow x_0}f^g }[/math].

כאשר [math]\displaystyle{ L=M=0 }[/math] או [math]\displaystyle{ L=1,M=\infty }[/math] או [math]\displaystyle{ L=\infty, M=0 }[/math].

בכל אחד מהמקרים נשתמש בדרך הבאה-

ראשית נבחין כי [math]\displaystyle{ f^g = e^{ln(f^g)} = e^{gln(f)} }[/math],

שנית, נחשב את הגבול [math]\displaystyle{ K=\lim_{x\rightarrow x_0}gln(f) }[/math].

לבסוף, קיבלנו כי מתקיים

[math]\displaystyle{ \lim_{x\rightarrow x_0}f^g=e^K }[/math]

דוגמא 6

משפט לופיטל והוכחתו

נניח כי [math]\displaystyle{ \lim_{x\to a^+}f(x)=\lim_{x\to a^+}g(x)=0 }[/math] ונניח עוד כי [math]\displaystyle{ f,g }[/math] גזירות בסביבה ימנית של a ומתקיים [math]\displaystyle{ \lim_{x\to a^+}=\frac{f'(x)}{g'(x)}=L }[/math] אז מתקיים [math]\displaystyle{ \lim_{x\to a^+}=\frac{f(x)}{g(x)}=L }[/math]

הוכחה

נוכל לבנות [math]\displaystyle{ \tilde{f},\tilde{g} }[/math] רציפות שמקיימות [math]\displaystyle{ \tilde{f}=\begin{cases} f\left(x\right) & x\neq a\\ 0 & x=a \end{cases} \tilde{g}=\begin{cases} g\left(x\right) & x\neq a\\ 0 & x=a \end{cases} }[/math] הגבול של מנתם בa יהיה זהה לגבול המקורי כי הוא נבדל ממנו רק בנקודה 1 לשם נוחות נמשיך לקרוא להם .f,g על פי משפט ערך הביניים של קושי עבור כל x בסביבה הימנית של a שבה f,g מוגדרות נוכל לבחור [math]\displaystyle{ a\lt c(x)\lt x }[/math] שמקיימת [math]\displaystyle{ \frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(c(x))}{g'(c(x))} }[/math] ולכן נקבל [math]\displaystyle{ \lim_{x\to a^{+}}\frac{f(x)}{g(x)}=\lim_{x\to a^{+}}\frac{f'(c(x))}{g'(c(x))}=\lim_{c\to a^{+}}\frac{f'(c)}{g'(c)} }[/math] כרצוי השיוויון האחרון נובע מכך ש [math]\displaystyle{ a\lt c(x)\lt x }[/math] וממשפט הסנדויץ