שיחה:88-132 אינפי 1 סמסטר א' תשעב
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
שאלות
תרגיל 2 שאלה 5
האם חייבים להשתמש באפסילון לפתרון סעיף א'? או שזהו רק רמז? הרבה יותר פשוט להוכיח שinfB הוא חסם מילעל של A ולכן בהכרח מתקיים מה שצריך להוכיח.
- תראה, עקרונית הבקשה להשתמש באפסילון היא על מנת לכוון סטודנטים בכיוון הנכון, שלרוב מסבירים בניפנופי ידיים. אולם, הוכחה מילולית מדוייקת מתקבלת כמובן גם כן. --ארז שיינר
תרגיל 1 שאלה 1
האם אני חייב לפצל לשני מקרים ולהשתמש בהגדרה של הערך המוחלט או שניתן להעלות בריבוע?
הממ אני לא חושב שזה נכון מה שאמרת קח דוגמא a=-7 ו b=1 יצא לך לא נכון
כע.. שמתי לב לטעות וכבר תיקנתי XD
תרגיל 1 שאלה 3
אני די מסתבך עם זה עברתי על ההוכחה של אי שיוויון המשולש ובכל זאת אין לי שום כיוון התחלה אם יש איזשהי דרך לעזור בלי לומר את התשובה באופן מלא אני אשמח לעזרה
(לא מתרגל) כשהוכחתי את הטענה, נעזרתי באי שויוון המשולש פעמיים ובמשפטים שלמדנו בהרצאה והזכרנו בתירגול. רמז קטן: (a-b) + b = a לא צריך פעמיים תניח בה"כ |a|>=|b|
צריך שני 'משפטים' בתרגיל הזה: [math]\displaystyle{ |c| \lt d \Leftrightarrow -d\lt c\lt d }[/math] וגם אי שוויון המשולש כמו שהזכירו לעיל.
נראה לי שאלה 5 2 הייתה בבגרות השנה מועד ב 806
זה עם סכום של סדרה חשבונית לא?
טעות במערכי תרגול
כתבת ששלמות היא אקסיומה לאמרות שהיא נובעת מההגדרה של R אם אתה מתייחס לשלמות כאקסיומה אתה צריך להוכיח שקיים R
- מתייחסים לזה כאקסיומה כיוון שאנו לא מוכיחים את זה. אבל זה נכון שזו אינה אקסיומה באמת, וזה נובע מההגדרות של שדה הממשיים. --ארז שיינר