שדות - תכונות בסיסיות

מתוך Math-Wiki

הרחבות של שדות

הגדרה: יהיה [math]\displaystyle{ F }[/math] שדה. הרחבה של [math]\displaystyle{ F }[/math] היא כינוי לכל שדה [math]\displaystyle{ K }[/math] המכיל את [math]\displaystyle{ F }[/math]. לרוב כותבים גם [math]\displaystyle{ K/F }[/math]. באופן טבעי [math]\displaystyle{ K }[/math] הוא מרחב וקטורי מעל [math]\displaystyle{ F }[/math]. המימד של [math]\displaystyle{ K }[/math] מעל [math]\displaystyle{ F }[/math] יסומן ב-[math]\displaystyle{ [K:F] }[/math] (הוא אינו חייב להיות סופי).

דוגמא: [math]\displaystyle{ \mathbb{C}/\mathbb{R} }[/math] היא הרחבת שדות ממימד סופי. [math]\displaystyle{ \mathbb{R}/\mathbb{Q} }[/math] היא הרחבת שדות ממימד אינסופי.

טענה: יהיו [math]\displaystyle{ F\subseteq K\subseteq L }[/math] שדות. אזי [math]\displaystyle{ [L:F]=[L:K]\cdot[K:F] }[/math].

הרעיון של ההוכחה: אם [math]\displaystyle{ A }[/math] הוא בסיס ל-[math]\displaystyle{ L }[/math] כמרחב וקטורי מעל [math]\displaystyle{ K }[/math] ו-[math]\displaystyle{ B }[/math] הוא בסיס ל-[math]\displaystyle{ K }[/math] כמרחב וקטורי מעל [math]\displaystyle{ F }[/math] אז הקבוצה [math]\displaystyle{ \{ab~|~a\in A, b\in B\} }[/math] היא בסיס ל-[math]\displaystyle{ L }[/math] כמרחב וקטורי מעל [math]\displaystyle{ F }[/math] והיא בעלת [math]\displaystyle{ [L:K][K:F] }[/math] איברים (זה לא טריוויאלי).

תכונה: אם [math]\displaystyle{ F }[/math] שדה אז כל חיתוך של תתי שדות של [math]\displaystyle{ F }[/math] הוא גם שדה.

הגדרה: נניח ש-[math]\displaystyle{ L }[/math] שדה ו-[math]\displaystyle{ F,K }[/math] תת שדות של [math]\displaystyle{ L }[/math]. הקומפוזיטום של [math]\displaystyle{ F,K }[/math] הוא תת השדה הקטן ביותר המכיל את [math]\displaystyle{ F,K }[/math]. הוא יסומן ב-[math]\displaystyle{ FK }[/math].

איברים אלגבריים וטרנסצנדנטים

הגדרה: תהי [math]\displaystyle{ K/F }[/math] הרחבת שדות ו-[math]\displaystyle{ a\in K }[/math]. האיבר [math]\displaystyle{ a }[/math] נקרא אלגברי מעל [math]\displaystyle{ F }[/math] אם קיים פולינום [math]\displaystyle{ f(x)\neq 0 }[/math] כך ש-[math]\displaystyle{ f(a)=0 }[/math]. אם לא קיים פולינום כזה, [math]\displaystyle{ a }[/math] נקרא טרנסצנדנטי מעל [math]\displaystyle{ F }[/math].

דוגמא: [math]\displaystyle{ \sqrt{2} }[/math] הוא אלגברי מעל [math]\displaystyle{ \mathbb{Q} }[/math] כי הוא מאפס את [math]\displaystyle{ x^2-2\in\mathbb{Q} }[/math]. לעומת זאת, ניתן להוכיח כי המספרים [math]\displaystyle{ e,\pi }[/math] הם טרנסצנדנטיים מעל [math]\displaystyle{ \mathbb{Q} }[/math].

הערה: לא קשה להראות כי כמות המספרים המרוכבים האלגבריים מעל [math]\displaystyle{ \mathbb{Q} }[/math] היא בת מנייה. לכן, בהכרח קיימים ב-[math]\displaystyle{ \mathbb{C} }[/math] (וגם ב-[math]\displaystyle{ \mathbb{R} }[/math]) איברים טרנסצנדנטיים. (זו הוכחה לא קונסטרוקטיבית לכך שקיימים מספרים טרנצנדנטיים).

דוגמא: יהיה [math]\displaystyle{ F }[/math] שדה ויהי [math]\displaystyle{ F(t) }[/math] שדה השברים של [math]\displaystyle{ F[t] }[/math]. קל לבדוק כי [math]\displaystyle{ t }[/math] טרנסצנדנטי מעל [math]\displaystyle{ F }[/math]. למעשה, כל איבר ב-[math]\displaystyle{ F(t)\setminus F }[/math] הוא טרנסצנדנטי.

הגדרה: הרחבת שדות [math]\displaystyle{ K/F }[/math] נקראת אלגברית אם כל איבר ב-[math]\displaystyle{ K }[/math] אלגברי מעל [math]\displaystyle{ F }[/math].

סימון: תהי [math]\displaystyle{ K/F }[/math] הרחבת שדות ו-[math]\displaystyle{ a\in K }[/math]. מסמנים [math]\displaystyle{ F[a]=\{f(a)~|~f\in F[x]\} }[/math].

טענה: תהי [math]\displaystyle{ K/F }[/math] הרחבת שדות ו-[math]\displaystyle{ a\in K }[/math]. אזי [math]\displaystyle{ a }[/math] אלגברי מעל [math]\displaystyle{ F }[/math] אם ורק אם המימד של [math]\displaystyle{ F[a] }[/math] כמרחב וקטורי מעל [math]\displaystyle{ F }[/math] סופי. במקרה זה [math]\displaystyle{ F[a] }[/math] שדה.

הוכחה (תקציר): כוון אחד: נניח ש-[math]\displaystyle{ \dim_FF[a]=n\lt \infty }[/math]. אזי הקבוצה [math]\displaystyle{ \{1,a,a^2,\ldots,a^n\} }[/math] היא בגודל [math]\displaystyle{ n+1 }[/math] ולכן תלויה לינארית מעל [math]\displaystyle{ F }[/math]. לכן קיימים [math]\displaystyle{ \alpha_0,\alpha_1,\ldots,\alpha_n\in F }[/math], לא כולם 0, כך ש-[math]\displaystyle{ \alpha_0+\alpha_1a+\ldots+\alpha_na^n=0 }[/math]. אם נגדיר [math]\displaystyle{ f(x)=\alpha_0+\alpha_1x+\ldots+\alpha_nx^n\in F[x] }[/math] אז [math]\displaystyle{ f(x)\neq 0 }[/math] ובעצם הראינו [math]\displaystyle{ f(a)=0 }[/math]. לכן [math]\displaystyle{ a }[/math] אלגברי מעל [math]\displaystyle{ F }[/math].

כוון שני: נניח שקיים [math]\displaystyle{ f(x)\neq 0 }[/math] כך ש-[math]\displaystyle{ f(a)=0 }[/math]. נסמן [math]\displaystyle{ n=\deg f }[/math]. מספיק להראות ש-[math]\displaystyle{ \{1,a,a^2,\ldots,a^{n-1} }[/math] קבוצה פורשת (מעל [math]\displaystyle{ F }[/math]) ל-[math]\displaystyle{ F[a] }[/math]. יהי [math]\displaystyle{ b\in F[a] }[/math] אזי [math]\displaystyle{ b=g(a) }[/math] עבור [math]\displaystyle{ g(x)\in F[x] }[/math] כלשהו. קיימים פולינומים [math]\displaystyle{ q(x),r(x)\in F[x] }[/math] כך ש-[math]\displaystyle{ g(x)=q(x)f(x)+r(x) }[/math] וגם [math]\displaystyle{ \deg r\lt \deg f=n }[/math]. אזי [math]\displaystyle{ g(a)=q(a)f(a)+r(a)=r(a) }[/math] ו-[math]\displaystyle{ r(a)\in\mathrm{span}\{1,a,\ldots,a^{n-1}\} }[/math] כי [math]\displaystyle{ \deg r\lt n }[/math].

כדי לראות שבמקרה זה [math]\displaystyle{ F[a] }[/math] שדה, נשים לב ש-[math]\displaystyle{ F[a] }[/math] הוא תחום שלמות ממימד סופי מעל [math]\displaystyle{ F }[/math] ולכן סיימנו הודות לתרגיל הבא:

תרגיל: יהי [math]\displaystyle{ R }[/math] תחום שלמות ו-[math]\displaystyle{ F\subseteq R }[/math] שדה כך ש-[math]\displaystyle{ \dim_FR\lt \infty }[/math]. אזי [math]\displaystyle{ R }[/math] שדה. [רמז: לכל [math]\displaystyle{ r\in R }[/math] ההעתקה [math]\displaystyle{ x\mapsto rx }[/math] היא העתקה לינארית חד חד ערכית (מדוע?).]