אינפי 1 לתיכוניסטים תש"ע

מתוך Math-Wiki

אינפי 1 לתיכוניסטים

כאן יהיה המקום שלנו להיעזר אחד בשני בקורס חשבון אינפיניטסימלי 1. אתם מוזמנים לשאול שאלות ולדון בבעיות הנוגעות לקורס אינפי 1 - סטודנטים הלומדים בשתי הקבוצות מוזמנים להגיב כאן.

ארכיון

ארכיון 1

תרגילים + פתרונות

תרגיל 1

תרגיל 2

תרגיל 3

תרגיל 4

תרגיל 5

תרגיל 6

תרגיל 7

תרגיל 8

תרגיל 9

שאלות

שאלה

אני לא בטוח במשהו: במבחן ד'אלמבר , כתוב במייזלר שהטור מתבדר אם החלוקה גדולה או שווה ל 1. אני זוכר שהמתרגל פעם קיבל שהחלוקה שווה ל 1 אבל אמר שזה לא אומר כלום. אז מה נכון?

תשובה

אני אסביר. אם [math]\displaystyle{ \forall n : \frac{a_{n+1}}{a_n}\geq 1 }[/math] זה אומר שהסדרה מונוטונית עולה. מכיוון שהיא חיובית, זה אומר שהיא בהכרח לא שואפת לאפס ולכן הטור מתבדר.


לעומת זאת, אם [math]\displaystyle{ \lim_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}=1 }[/math] לא ניתן לדעת אם הטור מתכנס, משמע יש דוגמאות לשני הכיוונים. הטור ההרמוני [math]\displaystyle{ \sum \frac{1}{n} }[/math] מקיים את התכונה הזו ומתבדר, ואילו הטור [math]\displaystyle{ \sum \frac{1}{n^2} }[/math] מקיים את התכונה הזו ומתכנס ([math]\displaystyle{ \lim_{n\rightarrow \infty}\frac{n^2}{(n+1)^2}=1 }[/math])

שאלה

איך אני מראה שלמשוואה tg x = x יש אינסוף פתרונות ממשיים?

תשובה

[math]\displaystyle{ \lim_{x\rightarrow \frac{\pi}{2} +\pi k}tgx - x= \lim_{x\rightarrow \frac{\pi}{2} +\pi k}\frac{sinx}{cosx} - x = \pm \infty }[/math]

ולכן לפי משפט ערך הביניים כל ערך ממשי מתקבל בין השאיפה לאינסוף ומינוס אינסוף, וזה קורה אינסוף פעמים (לכל k). בפרט, 0 מתקבל אינסוף פעמים, ולכן [math]\displaystyle{ tgx=x }[/math] אינסוף פעמים.

שאלה

האם פונ' חח"ע ועל היא מונוטונית?

תשובה

רציפה או לא? קח את x על הרציונליים, ו2x על האי רציונליים, חח"ע ועל ואינה מונוטונית.

אם היא רציפה, היא חייבת להיות מונוטונית לפי משפט ערך הביניים (תרגיל) ואפילו לא צריך את העל.

שאלה

נניח שיש לי פונקצייה שמוגדרת בתחום x>a, ובדיוק בנק' x=a יש אי-רציפות בצורה של 'אסימפטוטה' - האם זו אי רציפות מסוג ראשון, או שני?

תשובה

מה זה צורה של אסימפטוטה. ההגדרה מאד מאד פשוטה:

אי רציפות סליקה: קיים גבול סופי בנקודה

אי רציפות ממין ראשון: קיימים גבולות חד צדדיים סופיים בנקודה

אי רציפות ממין שני: כל מצב אחר


הדבר היחיד שאני לא בטוח לגביו, באמת בהקשר השאלה שלך, הוא מה קורה כאשר מדברים על פונקציה בתחום הגדרה מסוים. כלומר, מה היא האי רציפות של פונקציה [math]\displaystyle{ \frac{x}{\sqrt{x}} }[/math] בנקודה אפס. מצד אחד לפי ההגדרה שרשמתי למעלה זה מין שני כי לא קיים הגבול החד צדדי משמאל. מצד שני, אם נחליף את הנקודה ב0 נקבל פונקציה רציפה ב(אינסוף,0], אז זה נשמע כמו סליקה. אז אני באמת לא בטוח מה ההגדרה במקרה כזה.

שאלה

איך אפשר להוכיח שאם יש לי סדרה : [math]\displaystyle{ a_n }[/math] המתכנסת ל-0, אזי : [math]\displaystyle{ \frac{\sum_{n=1}^{\infty}{a_n}}{n} = 0 }[/math] (כלומר הוכחה לפי הגדרת הגבול) ?

תשובה

יש טעות בשאלה. הרי הטור בוודאי לא חייב להתכנס, ולכן אין הגדרה כלל לחלוקה הנ"ל, ובפרט אין גבול.

תשובה

לא הבנתי איך זה קשור שהטור לא מתכנס... בכל מקרה מה שרשמת זה ההממוצע החשבוני של [math]\displaystyle{ \ a_n }[/math],והוכחנו בהרצאה שהממוצע החשבוני של [math]\displaystyle{ \ a_n }[/math] מתכנס לאותו גבול כמו [math]\displaystyle{ \left\{a_n\right\}_{n=1}^{\infty} }[/math] לכן אם הגבול של [math]\displaystyle{ \left\{a_n\right\}_{n=1}^{\infty} }[/math] הוא 0 זה גם הגבול של הממוצע החשבוני :)


מוכיחים את המשפט של השוויון בין הגבולות (בצורה כללית) בעזרת משפט שטולץ. http://he.wikipedia.org/wiki/%D7%9E%D7%A9%D7%A4%D7%98_%D7%A9%D7%98%D7%95%D7%9C%D7%A5#.D7.A0.D7.99.D7.A1.D7.95.D7.97_.D7.94.D7.9E.D7.A9.D7.A4.D7.98

הטעות היא שלפי מה שכתבת, זה נראה כאילו דיברת על סכום של הטור האינסופי עד אינסוף (כאיבר אחד) נחלק ל-n (שהוא מה שרץ) ואז כמו שנאמר, זה לא ממש מוגדר. וכמו שאמרו, ההוכחה בעזרת שטולץ היא די פשוטה

אפשר גם להוכיח בעזרת סנדוויץ'? לומר שהביטוי גדול שווה מסדרת המינימומים וקטן שווה מסדרת המקסימומים, שהם תתי סדרה של an ולכן הגבול שלהם הוא 0, ולכן גם הביטוי שואף ל0?

שאלה

בתחילת הקורס נאמר שיש חובת הגשה של 80 אחוז. לא הגשתי את התרגילים 7,8 מפני שלא יכלתי להגיע לאוניברסיטה בזמן חופשת הסמסטר. האם אי הגשת שני תרגילים אלה יורד לי ציון?

:אפשר להגיש אותם גם ביום ראשון.

שאלה

תהי סדרה an. אם הגבול של an^2 קיים ושווה למס' ממשי כלשהו, מה זה אומר לי לגבי הגבול של an? הוא לא חייב להיות קיים, נכון? אבל במידה וכן: הוא יכול להיות פלוס מינוס השורש של הגבול הנ"ל, ואלו האפשרויות היחידות, נכון?

תשובה

בדיוק. תמיד התת סדרה המורכבת מהשליליים של an תתכנס למינוס השורש, ותת הסדרה של החיוביים תתכנס לשורש. אם המספר הינו אפס, אז גם an תתכנס בהכרח לאפס.

מגניב. אבל שוב, זה לא דורש שיהיה קיים גבול לan נכון?
אם יש סדרות חלקיות שמתכנסות לגבולות שונים ברור שאין גבול. וכמו שאמרתי, אם הגבול המקורי הוא אפס אז כן חייב להיות הגבול אפס גם של an.

שאלה

מה המשמעות האינטואיטיבית/גאומטרית של רציפות במידה שווה?

תשובה

מה היא רציפות? פונקציה הינה רציפה אם הגבול שלה בנקודה הוא הערך שלה בנקודה, כלומר שבכל נקודה היא שואפת לערך שלה בנקודה.

מידה שווה יכולה לדבר על גבולות באופן כללי. המילה "מידה" מתכוונת למהירות ההתכנסות. כלומר כמה מהר הפונקציה מגיעה לגבול שלה בנקודה. ואיך ניתן למדוד מהירות התכנסות? על ידי כמה קטן הדלתא שנדרש על מנת שהפונקציה תהיה במרחק אפסילון מסויים מהגבול.

כעת, המילה "שווה" אומרת שה"מידה" כלומר מהירות ההתכנסות שווה בכל נקודה בקטע בו יש רציפות במידה שווה. כלומר, לכל אפסילון, קיים דלתא, כך שאם ניקח מסדרון באורך דלתא איפשהו על ציר x, הפונקציה לא תצא בתוכו ממסדרון באורך אפסילון בציר y. ובמילים, הפונקציה מתכנסת פחות או יותר באותה מהירות לגבול שלה בכל נקודה בקטע.

שאלה

האם יש דרך למדוד למה מתכנס הטור [math]\displaystyle{ (-1)^n*1/n }[/math]?

ועוד שאלה לא קשורה: זה ארז שעוזר לנו כאן בכל השאלות או המתרגלים האחרים באינפי?

יש לי דה ז'ה וו שמישהו עונה לי ואומר לי כן אבל לא אומר לי איך, אז בבקשה תגידו גם איך :)

כן. (זה שארז עונה. ואני באמת לא יודע איך הוא עושה את זה D: ). במחשבון אני מקבל שהוא שווה ל-(-0.69),
כן אבל התכוונתי לתשובה ממש עם נוסחאות ומשפטים..

שאלה - קיום גבול חד-צדדי

איך אפשר להפריך קיומו של גבול חד צדדי? למשל, בפונקצייה sin(1/x) : האם מותר לי לומר שהגבול החד צדדי של 0 מימין שווה ממש לגבול של sin(x) כאשר x שואף לאינסוף, אם קיים?

תשובה

עושים את זה באלגנטיות באמצעות סדרות והגדרת הגבול לפי היינה.

לוקחים שתי סדרות [math]\displaystyle{ 0\leq x_n,y_n \rightarrow 0 }[/math]. אם היה גבול חד צדדי מימין, לפי היינה [math]\displaystyle{ f(x_n),f(y_n) \rightarrow L }[/math] כאשר L הינו הגבול. אבל אנחנו נבנה סדרות כך שאחרי הפעלת הפונקציה עליהן נגיע לגבולות שונים בסתירה להגדרה הגבול לפי היינה.

הסדרות במקרה זה הינן

[math]\displaystyle{ x_n = \frac{1}{\frac{\pi}{2}+2 \pi n} }[/math]

[math]\displaystyle{ y_n = \frac{1}{-\frac{\pi}{2}+2 \pi n} }[/math]

וכמובן ש [math]\displaystyle{ \forall n: f(x_n)=1,f(y_n)=-1 }[/math] עבור [math]\displaystyle{ f=sin(\frac{1}{x}) }[/math]

שאלה - רציפות במידה שווה

היום בתרגול עם ראובן הוזכר משפט על רציפות במידה שווה שמעולם לא שמעתי עליו, לא מצאתי אותו בהרצאות או בספר : אם f רציפה, וקיים עבורה גבול סופי כש-x שואף לפלוס\מינוס אינסוף (שניהם קיימים), אזי f רציפה במידה שווה. מאיפה הגיע המשפט הזה? ולמה הוא נכון?

תיקון - מצאתי אותו, והוא מנוסח כך : f רבמ"ש בקטע (a,b) <==> הפונק' f רציפה בקטע זה, וקיימים גבולות חד צדיים ל-a ו-b. השאלה שלי היא : הוא גם עובד עבור a או b שהם אינסופיים, נכון? ודבר שני, אם קיים גבול שהוא אינסוף לפונק' כאשר היא שואפת ל-b, למשל (לאחד מהם) - האם זה בהכרח סותר את רבמ"שיות הפונקצייה?

תשובה

1. אם פונקציה רציפה ב(a,b) ואחד מהם או שניהם הוא אינסוף אבל יש לה גבולות בקצות הקטע היא רציפה במ"ש. בצד הסופי, נניח a, זה אומר שניתן להשלים אותה לפונקציה רציפה בקטע (a,b]. בצד האינסופי, אם לפונקציה יש גבול זה אומר שהחל ממקום מסוים M המרחק שלה מהגבול קטן מאפסילון, ובפרט המרחק בין כל שני [math]\displaystyle{ f(x_1),f(x_2) }[/math] קטן מפעמים אפסילון, ללא תלות כלל במרחק בין [math]\displaystyle{ x_1,x_2 }[/math]. לכן מפרידים את הפונקציה ל[math]\displaystyle{ [a,M] }[/math] שזה קטע סגור וחסום לכן הפונקציה רציפה בו במ"ש ולכן יש דלתא לאפסילון ו[math]\displaystyle{ [M,\infty) }[/math] שם ראינו שהמרחק קטן מפעמים אפסילון בלי שום קשר לדלתא, ולכן הפונקציה רציפה באיחוד הקטעים במ"ש. אם שני הצדדים אינסופיים מחלקים את הפונקציה לשלוש וההוכחה דומה.


2. אם בצד הסופי הגבול הינו אינסוף הפונקציה אינה רציפה במ"ש, מכיוון שלפי משפט אם f אינה חסומה בקטע חסום אזי היא אינה רציפה שם במ"ש. אם הגבול הוא אינסוף באינסוף אי אפשר לדעת כי [math]\displaystyle{ x }[/math] הינה כזו, והיא רציפה במ"ש, ואילו [math]\displaystyle{ x^2 }[/math] אינה רציפה במ"ש.

תודה רבה, הבהרת לי את העניין בצורה מלאה - עכשיו הצלחתי לטפל בכ"כ הרבה תרגילים שלא הצלחתי קודם, ואיכשהו באותם תרגילים שיוצא ששואף לאינסוף באינסוף - ההוכחה צריכה להיות בצורה פורמלית והיא מסתדרת בקלות!


בשמחה. שים לב רק לנקודה חשובה (זלצמן מטעה בה בכוונה תמיד) אם הפונקציה אינה רציפה בקטע היא בוודאי אינה רציפה בו במ"ש גם אם הגבולות קיימים בקצוות. למשל [math]\displaystyle{ sin(1/x) }[/math] יש לה גבולות בפלוס מינוס אינסוף אבל בוודאי היא אינה רציפה במ"ש כי יש לה אי רציפות ב0. (היא גם לא רציפה במ"ש בקטע (0,אינסוף)

שאלות גבוליות על מקרי-קיצון

  • נניח שיש לי פונקצייה, כמו logx. ידוע שהיא מוגדרת רק עבור x>0, אז האם אי-הרציפות ב-x=0 נחשבת לרציפות מסוג שני? (מפני שהגבול השמאלי לא קיים)
  • אם יש לי פונקצייה כמו f(x)=\frac{1}{|x|} (כלומר, יש לה 'אסימפטוטה' ב-x=0 ששואפת לפלוס-אינסוף משני הצדדים), האם מדובר באי-רציפות מסוג שני? (הגבול השמאלי והימני לא סופיים, ולכן כביכול לא קיימים?) או שאולי באי-רציפות סליקה (מה שממש לא נראה לי - למרות ששני הגבולות שווים)
  • אם בשאלה השנייה שלי התשובה הנכונה היא הראשונה, אז האם אפשר להסיק שבכל מקרה בו אומרים "אם קיים הגבול", בלי לומר מילה על 'גבול במובן הרחב', בכל הקשור לפונקציות\גבולות\רציפות\רבמ"ש, מתכוונים לגבול סופי?


תשובה

יש תשובה בדיוק על השאלות האלה בדף הזה.

  • לא יודע
  • הגבולות חייבים להיות קיימים וסופיים.
  • תלוי בהקשר ובניסוח ובכוונת המשורר

הלצה

חשבתי שכולנו גם זקוקים לקצת צחוק בכל הלחץ מההתכוננות לאינפי. סרטון מאוד מצחיק ומומלץ :) לחץ כאן

מצחיק מאוד, אהבתי את הביצוע D: !

גבול של פונקצייה

כדי להוכיח גבול של פונקצייה בנקודה, לא מספיק להראות שקיימת סדרה [math]\displaystyle{ a_n }[/math] ששואפת לאותה נק' וקיים גבול לסדרה המוגדרת ע"י [math]\displaystyle{ f(a_n) }[/math], נכון? בעיקרון המשפט אומר שלכל סדרה התנאי צריך להתקיים. מה שכן, זה עוזר להפריך, ובדיוק בשביל זה יש לי את השאלה הבאה:

  • תהי [math]\displaystyle{ f(x)=(cos(2x))^{\frac{1}{x^2}} }[/math] . האם קיים גבול ב-x שואף ל-0, ומהו?
  • ד"א, אם אני רוצה להפריך קיום של גבול, האם אני יכול לעשות זאת לא באמצעות סדרות?
  • נניח שיש לי פונקצייה כמו [math]\displaystyle{ xsin\frac{1}{x} }[/math], שאמנם מבצעת אינסוף מחזורים בסביבת אפס, אבל כולם שואפים ל-0 - ניתן לומר שהגבול הוא 0, נכון? (באופן כללי חייב להיות גבול, כי רציפות בנק' גוררת קיום של גבול בה)


ניתן גם להוכיח באמצעות סדרות, ואני אוכיח מיד:

  • מאיפה השאלה? אחד התלמידים שלי פתר משהו דומה בשיטות פשוטות, אבל אני רואה את השאלה וישר חושב לפתור אותה באמצעות כלל לופיטל (אני לא חושב שלמדתם). לכן השאלה היא אם זה בכלל בחומר שלכם או לא.
  • כן, אפשר לפריך לפי קושי, פשוט זה נראה לי יותר מסובך. למצוא סדרות ששואפות למספרים שונים, או סדרה שואפת לאינסוף הרבה יותר קל.
  • אבל אין רציפות באפס, אז בוודאי זה לא גורר קיום גבול! אבל, הגבול אכן קיים. קח סדרה ששואפת לאפס [math]\displaystyle{ x_n \rightarrow 0 }[/math]. אזי [math]\displaystyle{ x_n \cdot sin\frac{1}{x_n} }[/math] הינה סדרה המורכבת מסדרה השואפת לאפס כפול חסומה! ולפי משפט מסדרות זה אומר שהגבול הינו אפס ללא תלות בסדרה (רק בעזרת העובדה שהיא שואפת לאפס) וזו הוכחה לפי היינה שהגבול הינו אפס.

תת-סדרה של תת סדרה

  • תהי [math]\displaystyle{ a_n }[/math] סדרה. הוכח שהיא שואפת לאפס <==> לכל תת סדרה [math]\displaystyle{ a_{n_k} }[/math] קיימת תת סדרה [math]\displaystyle{ a_{n_{k_j}} }[/math] כך שהטור [math]\displaystyle{ \sum{a_{n_{k_j}}} }[/math] מתכנס בהחלט.
  • הוכח או הפרך : הסדרה [math]\displaystyle{ x_n }[/math] מתכנסת ל-[math]\displaystyle{ x_0 }[/math] <==> לכל תת סדרה [math]\displaystyle{ x_{n_k} }[/math] יש תת סדרה [math]\displaystyle{ x_{n_{k_j}} }[/math] שמתכנסת ל-[math]\displaystyle{ x_0 }[/math].


אני אפילו לא יודע איך לגשת לתרגילים מהסוג הזה - באילו כלים אני צריך להשתמש כאן?


תשובה

נתחיל מהראשון. הכיוון הפשוט יותר הינו שאם לכל תת סדרה יש תת סדרה שעבורה הטור מתכנס, לכן לכל תת סדרה יש תת סדרה ששואפת לאפס (טור מתכנס -> סדרה שואפת לאפס). אבל מזה נובע שכל הגבולות החלקיים הם אפס, אחרת יש גבול חלקי שונה מאפס, יש תת סדרה ששואפת אליו, וכל תת סדרה שלה גם תשאף אליו בסתירה לכך שאחת מהן שואפת לאפס. ומכיוון שכל הגבולות החלקיים הינם אפס, גבול הסדרה הינו בהכרח אפס (limsup=liminf).


בכיוון השני, מספיק להוכיח את המשפט הבא: אם סדרה שואפת לאפס, יש לה תת סדרה שהטור שלה מתכנס (קל לראות לוגית שהמשפט הזה מספיק). ומה הטריק פה? לדלל את הסדרה המקורית... נניח הסדרה המקורית הינה [math]\displaystyle{ \frac{1}{n} }[/math] ברור ש[math]\displaystyle{ \frac{1}{n^2} }[/math] הינה תת סדרה שלה. האלגוריתם המדויק הוא כזה. ניקח את הסדרה [math]\displaystyle{ \epsilon_n }[/math] כך ש [math]\displaystyle{ 0\lt \epsilon_n \lt \frac{1}{n^2} }[/math]. כעת, לכל [math]\displaystyle{ \epsilon_n }[/math] קיים [math]\displaystyle{ n_{\epsilon_n} }[/math] כך שהחל ממנו והלאה הסדרה קטנה מ[math]\displaystyle{ \epsilon_n }[/math]. ניקח את האיברים המתאימים לאפסילונים לפי הסדר (לכל אפסילון נבחר את האיבר הראשון שקטן ממנו) וקל לראות לפי מבחן ההשוואה שהטור של תת הסדרה הנ"ל יתכנס.


מתוך הדברים שאמרתי, קל להוכיח את התרגיל השני.

שאלה

אני נתקל בבעיה הזו הרבה פעמים: איך אומים שהסדרה לוג איקס חלקי איקס היא מונוטונית יורדת? ואיך אומרים שלוג איקס חלקי איקס שואפת לאפס?? תודה..

עבור סדרות (n טבעי) זה טרוויאלי - אפשר להראות את זה באינדוקציה. באופן כללי, בגלל ש-e^x שואפת לכל גבול מהר יותר מכל פולינום, אז ln(x) שהוא הפעולה ההפוכה שואף לכל גבול לאט יותר מכל פולינום.

מה אני אומר במבחן? שלוג איקס חלקי איקס מונוטונית ושואפת לאפס כי...? אני יודע שזה נכון אבל כל הקורס הזה בנוי על פורמליות- אני יכול להגיד להם שהיא שואפת מהר יותר מכל פולינום? יקבלו את זה? אתה יכול לרשום בבקשה הוכחה פורמלית? תודה.:-)

שאלה - רציפות במידה שווה

נניח שיש לי פונקצייה כמו arctan(x) (ההופכית ל-tan) - האם היא מוגדרת כאשר x שואף לאינסוף? למשל, בשאלה: האם arctan(e^x) רבמ"ש בתחום (0, אינסוף), רציתי לומר שכן, כי יש לה גבולות סופיים (רבע פאי ב-0, חצי פאי באינסוף), אבל מצד שני tan של חצי פאי לא מוגדר.

(arctan(e^x היא אכן רציפה במ"ש כי היא רציפה על כל R ויש לה גבולות סופיים בקצוות. למי אכפת מה קורה לtan? שכן arctan הינה פונקציה רציפה על כל R לתוך הקבוצה [math]\displaystyle{ (-\pi/2,\pi/2) }[/math]. השאלה עצמה מוטעית "האם היא מוגדרת כאשר איקס שואף לאינסוף" ההגדרה לשאיפת גבול לאינסוף הינה אחת לפי קושי (או היינה, אבל הן שקולות). קל מאד לראות שכאשר איקס גדול, arctanx מתקרב לחצי פאי. בעזרת זה ניתן להוכיח שהגבול הינו חצי פאי.
(עוד שאלה, לא משואל השאלה הקודמת..)ונניח שיש לי שאלה לגבי רציפות במ"ש עם tan. היא לא תהיה רציפה במ"ש בכל תחום שכולל את פאי חלקי 2, נכון? כי בפרט היא לא רציפה שם (כי אין לה גבול), ולכן היא בוודאי לא רציפה במ"ש..? (תנאי הכרחי אבל לא מספיק של רציפות במ"ש הוא רציפות)
תלוי בשאלה הספציפית. זה נכון למשל לגבי [math]\displaystyle{ tg(\frac{10}{1+x^2}) }[/math] שאינה רציפה במ"ש אבל הפונקציה [math]\displaystyle{ tg(\frac{1}{1+x^2}) }[/math] כן רציפה במ"ש

שאלה

לגבי רבמ"ש, יש משפט שאומר שפונקציה רבמ"ש ב(a,b) אם היא רציפה בו ויש לה גבולות בצדדים. הכוונה היא לגבולות חד צדדים נכון? כלומר צ"ל שיש גבול בa+ וb-?