שיחה:88-112 לינארית 1 תיכוניסטים קיץ תשעב
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
שאלות
תשובה במשוואה מרוכבת
טקסט לא מעוצב האם פתרון של משוואה מרוכבת יכול לצאת עם שורש i ?
תשובה: הפתרון (או פתרונות) למשוואה מרוכבת צריך להיות מוצג בצורה [math]\displaystyle{ a+bi }[/math] כאשר [math]\displaystyle{ a,b\in \mathbb{R} }[/math].
בלי שורש [math]\displaystyle{ i }[/math].--איתמר שטיין 22:02, 16 ביולי 2012 (IDT)
שאלה 7 בתרגיל 1, טקסט לא מובן
האם הנקודה האחרונה היא (t,4)? אם כן, האם צריך לבטא בעזרת הפרמטר t ?
תשובה: אכן, הנקודה האחרונה היא [math]\displaystyle{ (t,4) }[/math].
יש לבטא את התשובה באמצעות [math]\displaystyle{ t }[/math] ולשים לב לאפשרויות השונות שיכולות להיות. --איתמר שטיין 21:53, 16 ביולי 2012 (IDT)
מערכת משוואות
האם אני חייב לפתור את המערכת משוואות בעזרת מטריצה או שאני יכול לפתור אותן בדרך הישנה כמו שמלמדים בתיכון (בדרך של הצבה). (שאלות 7-9)
תשובה: המטרה היא לתרגל דירוג מטריצות, אז כן, צריך להשתמש במטריצות. --איתמר שטיין 23:33, 17 ביולי 2012 (IDT)
תרגיל 1 שאלה 9
אין שום הבדל בין שאלה 8 ל9 מבחינת דרך הפיתרון (רק השדה שונה) . צריך לפתור את שאלה 9 בדרך שונה משאלה 8? או לפתור אותה בדיוק כמו שאלה 8?
תשובה:
אני לא יכול להגיד באיזה דרך צריך לפתור.
צריך לפתור את שאלה 9 ולהגיע לתשובה נכונה.
אם נראה לך שאותה דרך של שאלה 8 עובדת בשאלה 9, אז תשתמש באותה דרך.
אם נראה לך שאותה דרך של שאלה 8 לא עובדת, אז תשתמש בדרך אחרת.
--איתמר שטיין 10:31, 19 ביולי 2012 (IDT)
כמה שאלות לגבי התרגילים
1. האם אני צריך להראות את צורת הפתרון הסופי כאשר יש אינסוף פתרונות? 2. האם אני יכול להניח ב8 ש [math]\displaystyle{ b }[/math] שונה מאפס? 3. איך אני אמור לפתור את 9 אם אני לא יודע אם a גדול או קטן מ7 (מבחינת מודול)
כמה תשובות:
1) כן.
2) לא. אבל אתה יכול להפריד למקרים.
3) זה לא ממש אמור לשנות לך. [math]\displaystyle{ a }[/math] הוא איבר של [math]\displaystyle{ \mathbb{Z}_7 }[/math]. בכל מקרה במודולו [math]\displaystyle{ 7 }[/math] הוא שווה לאחד מ [math]\displaystyle{ \{0,1,\ldots,6\} }[/math] --איתמר שטיין 10:25, 19 ביולי 2012 (IDT)
תרגיל בית 1 - שאלה 9
האם אפשר להבין מכך שהמשתנים נמצאים במשוואות הנתונות שהם בין 0 ל-6 (כלומר a, a+3, a^2, b נמצאים בתחום הזה)?
תשובה: כל מספר שלם (כולל [math]\displaystyle{ a^2,a+3 }[/math] וכו') שווה במודולו 7 למספר בין 0 ל 6.--איתמר שטיין 18:27, 19 ביולי 2012 (IDT)
שאלה כללית
רק לוודאות: כשכתוב לפתור את מערכת המשוואות עם הפרמטר הכוונה למצוא פיתרון יחיד? או שהכוונה מתי אינסוף פתרונות וכו'...
תשובה: לפתור את המערכת אומר:
1) למצוא עבור איזה ערכים של הפרמטר/ים יש פתרון יחיד - ולמצוא את הפתרון.
2) למצוא עבור איזה ערכים של הפרמטר/ים אין פתרון.
3) למצוא עבור איזה ערכים של הפרמטר/ים יש אינסוף פתרונות - ולמצוא את הפתרון הכללי. --איתמר שטיין 13:27, 20 ביולי 2012 (IDT)
שאלה 5
איך אמורים לפתור את התרגיל הזה? צריך גם לחשוב על מספרים שיהיו בשדה וגם על החיבור והכפל שלהם..
- תשובה: כן. צריך לקחת ארבעה מספרים או סימנים כלשהם ([math]\displaystyle{ \{0,1,2,3\} }[/math] או [math]\displaystyle{ \{a,b,c,d\} }[/math] - זה לא באמת משנה) ולהגדיר על ארבעת האיברים האלה כפל וחיבור כך שכל האקסיומות של שדה מתקיימות.--איתמר שטיין 13:29, 20 ביולי 2012 (IDT)
אבל לא משנה איך מסדרים את האיברים, יצא לנו או שדה על mod 4 - סתירה (4 לא ראשוני), או (שני איברים ניטרלים לכפל או לחיבור).
רק להיות בטוח
כשאומרים פתירת מערכת מעל שדה כלשהו(נגיד Z 7), מתכוונים שרק הנעלמים שייכים לאותו השדה או שגם הפרמטרים?
- הכל שייך לשדה. כלומר, אם מבקשים ממך לפתור את 31x=3 מעל Z7, קודם הייתי מוצא מה הערך של 31 ב-z7 ואז ממשיך...
אבל אם נגיד אתה מחלק 3 ב 37, אז יוצא לך מספר לא שלם, אז איך אתה יכול לפתור אותו מעל Z7?
- אתה יכול לפרק 37=a*7+b כאשר a מקסימלי. במקרה כזה, ב-z7, שלושים ושבע יהיה שקול ל-b.
לא ממש הבנתי.. נגיד 4X = 25 מעל Z11, למה יהיה שווה X?