מכינה למחלקת מתמטיקה/מערכי שיעור/5
משפט דה-מואבר
מסתבר שקל יותר לבצע כפל בין מספרים מרוכבים בצורתן הפולרית:
- [math]\displaystyle{ r_1cis(\theta_1) \cdot r_2cis(\theta_2) = r_1r_2cis(\theta_1+\theta_2) }[/math]
כלומר כופלים את האורכים וסוכמים את הזויות.
הוכחה:
[math]\displaystyle{ r_1cis(\theta_1) \cdot r_2cis(\theta_2)=r_1r_2[(cos\theta_1+isin\theta_1)(cos\theta_2+isin\theta_2)]= }[/math]
[math]\displaystyle{ =r_1r_2[(cos\theta_1cos\theta_2-sin\theta_1sin\theta_2)+ i(sin\theta_1cos\theta_2+sin\theta_2cos\theta_1)]= }[/math]
[math]\displaystyle{ =r_1r_2[cos(\theta_1+\theta_2)+isin(\theta_1+\theta_2)]=r_1r_2cis(\theta_1+\theta_2) }[/math]
מסקנה: משפט דה-מואבר
- [math]\displaystyle{ \Big(r_1cis\theta\Big)^n=r_1^ncis(n\theta) }[/math]