אנליזת פורייה ויישומים קיץ תשעב/סיכומים/תקציר
להבא, אלא אם צוין אחרת, נסמן:
- [math]\displaystyle{ f }[/math] פונקציה.
- [math]\displaystyle{ a_n,b_n }[/math] הם מקדמי פורייה בטור פורייה של [math]\displaystyle{ f }[/math], ו־[math]\displaystyle{ c_n }[/math] מקדמי פורייה בטור פורייה המרוכב.
- [math]\displaystyle{ n!! }[/math] היא העצרת הכפולה של [math]\displaystyle{ n }[/math], והיא שווה למכפלת כל המספרים הזוגיים (אם [math]\displaystyle{ n }[/math] זוגי) מ־1 עד [math]\displaystyle{ n }[/math], או כל המספרים האי־זוגיים (אחרת). כלומר: [math]\displaystyle{ (2n)!!=\prod_{k=1}^n (2k)=2^n n! }[/math] ו־[math]\displaystyle{ (2n-1)!!=\prod_{k=1}^n (2k-1) }[/math].
- אי־שיוויון הולדר: אם [math]\displaystyle{ x\in\ell_p\ \and\ y\in\ell_q }[/math] כאשר [math]\displaystyle{ \frac1p+\frac1q=1 }[/math] (כלומר, [math]\displaystyle{ \ell_p,\ell_q }[/math] צמודים) אזי [math]\displaystyle{ \sum_{n=1}^\infty|x_n\cdot y_n|\le\|x\|_p\cdot\|y\|_q }[/math].
- אם [math]\displaystyle{ \mathbf u=\sum_{k=1}^n a_k\mathbf e_k }[/math] אזי [math]\displaystyle{ \forall k:\ a_k=\langle\mathbf u,\mathbf e_k\rangle }[/math].
- ההיטל של [math]\displaystyle{ \mathbf u }[/math] על [math]\displaystyle{ \mathbf v }[/math] הוא [math]\displaystyle{ \mbox{proj}_{\mathbf v}(\mathbf u)=\frac{\langle\mathbf u,\mathbf v\rangle}{\langle\mathbf v,\mathbf v\rangle}\mathbf v }[/math].
- אם [math]\displaystyle{ S=\{\mathbf b_1,\dots,\mathbf b_n\} }[/math] בסיס אורתוגונלי אזי הקירוב הטוב ביותר ל־[math]\displaystyle{ \mathbf u }[/math] ב־[math]\displaystyle{ \mbox{span}(S) }[/math] הוא [math]\displaystyle{ \tilde\mathbf u=\sum_{k=1}^n\mbox{proj}_{\mathbf b_k}(\mathbf u) }[/math], כלומר [math]\displaystyle{ \min_{\mathbf v\in W}\|\mathbf u-\mathbf v\|=\|\mathbf u-\tilde\mathbf u\| }[/math].
- אי־שיוויון בסל: [math]\displaystyle{ \|\mathbf u\|^2\ge\sum_{k=1}^n|\langle\mathbf u,\mathbf e_k\rangle|^2 }[/math].
- תהליך גרם־שמידט: בהנתן בסיס [math]\displaystyle{ \{\mathbf u_1,\dots,\mathbf u_n\} }[/math] נוכל להגדיר בסיס אורתוגונלי [math]\displaystyle{ \{\mathbf b_1,\dots,\mathbf b_n\} }[/math] ובסיס אורתונורמלי [math]\displaystyle{ \{\mathbf e_1,\dots,\mathbf e_n\} }[/math] באופן הבא: [math]\displaystyle{ \begin{array}{ll}\mathbf b_1:=\mathbf u_1,&\displaystyle\mathbf e_1:=\frac{\mathbf b_1}{\|\mathbf b_1\|}\\\mathbf b_2:=\mathbf u_2-\mbox{proj}_{\mathbf b_1}(\mathbf u_2),&\mathbf e_2:=\displaystyle\frac{\mathbf b_2}{\|\mathbf b_2\|}\\\vdots&\vdots\\\displaystyle\mathbf b_k:=\mathbf u_k-\sum_{i=1}^{k-1}\mbox{proj}_{\mathbf b_i}(\mathbf u_k),&\displaystyle\mathbf e_k:=\frac{\mathbf b_k}{\|\mathbf b_k\|}\\\vdots&\vdots\end{array} }[/math]
- מרחב הפולינומים ממעלה [math]\displaystyle{ n }[/math] או פחות מסומן [math]\displaystyle{ P_n[x] }[/math].
- פולינומי לז׳נדר: בהנתן המכפלה הפנימית [math]\displaystyle{ \langle f,g\rangle=\int\limits_{-1}^1 f(x)g(x)\mathrm dx }[/math] על מרחב הפולינומים [math]\displaystyle{ P_n[x] }[/math], הפולינומים האורתוגונליים הנוצרים בתהליך גרם־שמידט מהבסיס [math]\displaystyle{ \{1,x,x^2,\dots,x^n\} }[/math] הם [math]\displaystyle{ \begin{array}{l}P_0(x)=1\\P_1(x)=x\\\displaystyle P_2(x)=\frac{3x^2-1}2\\\displaystyle P_3(x)=\frac{5x^3-3x}2\\\vdots\end{array} }[/math]ניתן לחשב אותם גם ע״י [math]\displaystyle{ P_n(x)=\frac1{2^n\cdot n!}\frac{\mathrm d^n}{\mathrm dx^n}\left(x^2-1\right)^n }[/math] או [math]\displaystyle{ P_{n+1}(x)=\frac{(2n+1)x\cdot P_n(x)-n\cdot P_{n-1}(x)}{n+1} }[/math], והם מקיימים [math]\displaystyle{ \|P_n\|^2=\frac2{2n+1} }[/math].
- פולינומי צבישב: בהנתן המכפלה הפנימית [math]\displaystyle{ \langle f,g\rangle=\int\limits_{-1}^1\frac{f(x)g(x)}\sqrt{1-x^2}\mathrm dx }[/math] על מרחב הפולינומים [math]\displaystyle{ P_n[x] }[/math], הפולינומים האורתוגונליים הנוצרים בתהליך גרם־שמידט מהבסיס [math]\displaystyle{ \{1,x,x^2,\dots,x^n\} }[/math] הם [math]\displaystyle{ \begin{array}{l}T_0(x)=1\\T_1(x)=x\\T_2(x)=2x^2-1\\T_3(x)=4x^3-3x\\\vdots\end{array} }[/math]ניתן לחשב אותם גם ע״י [math]\displaystyle{ T_n(x)=\frac{\sqrt{1-x^2}}{(-1)^n(2n-1)!!}\frac{\mathrm d^n}{\mathrm dx^n}\left(1-x^2\right)^{n-\frac12} }[/math] או [math]\displaystyle{ T_{n+1}(x)=2x\cdot T_n(x)-T_{n-1}(x) }[/math], והם מקיימים [math]\displaystyle{ \|T_n\|^2=\begin{cases}\pi,&n=0\\\frac\pi2,&\text{else}\end{cases} }[/math].