שיחה:88-230 אינפי 3 סמסטר א תשעג/קבוצה רגילה
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
שאלות
תרגיל 1 שאלה 5
בג' אין טעות??? לא צריך להיות רשום בעבור כל x,y ששייכים לA??,כתוב במקום בעבור כל x,y ששייכים לX
צודק. זה צריך להיות [math]\displaystyle{ x,y \in A }[/math]. יתוקן בקרוב.--איתמר שטיין 17:44, 25 באוקטובר 2012 (IST)
תוקן --איתמר שטיין 20:17, 25 באוקטובר 2012 (IST)
תרגיל 1 שאלה 6 ו7
בשביל קבוצה פתוחה או סגורה,צריך לדעת באיזו מטריקה מדובר,אז.... באיזו מטריקה מדובר??
לעצם השאלה - מדובר במטריקה האוקלידית הסטנדרטית [math]\displaystyle{ d_2 }[/math].
חוץ מזה, זה לא מדויק להגיד שצריך לדעת באיזה מטריקה מדובר. כי כמו שראינו - מטריקות שקולות יוצרות את אותן קבוצות פתוחות, אז באותה מידה אפשר להשתמש בכל מטריקה [math]\displaystyle{ d_p }[/math] שנוצרת ע"י [math]\displaystyle{ ||\quad||_p }[/math].--איתמר שטיין 20:55, 25 באוקטובר 2012 (IST)
למה לא?יש אינספור מטריקות שלא שקולות אחת לשנייה...
לא אמרתי שזה לא נכון, רק שזה לא מדויק.
בכל אופן לא צריך להתווכח על זה.
אם ברור לשנינו ש
1) עבור כל מטריקה מהמשפחה [math]\displaystyle{ d_p }[/math] זה לא משנה איזה מטריקה בוחרים.
2) הכוונה בשאלה היא למטריקות מהמשפחה הזאת - (וזאת הכוונה תמיד אם לא אומרים במפורש באיזה מטריקה משתמשים)
אז אנחנו מבינים אחד את השני.--איתמר שטיין 19:05, 27 באוקטובר 2012 (IST)
תרגיל 1 שאלה 7
לא הבנתי מניסוח השאלה האם באפשרויות הסיווג של הקבוצות ניתן לבחור גם באופציה לא פתוחה ולא סגורה?
תשובה: כן, אלה שתי שאלות נפרדות. האם היא פתוחה? והאם היא סגורה? יכול להיות שהתשובה לשתיהן היא לא.--איתמר שטיין 16:25, 29 באוקטובר 2012 (IST)
בנוגע לשעת הקבלה ביום ראשון
בימי ראשון בשעה 14:00 עד 15:30 מתקיימת ההרצאה באינפי3, יש אפשרות לשנות את מועד שעת הקבלה? כמו כן, תודה על שינוי שם הקבוצה! :)
תשובה: כן, אפשר. לא הייתי מודע לשעות של ההרצאה. אני אשנה את זה ל 15:30 עד 16:30--איתמר שטיין 13:18, 31 באוקטובר 2012 (IST)
תודה רבה!
תרגיל 2 שאלה 3
לא הבנתי את ההגדרה של A+B. אפשר דוגמא או הסבר? תודה :)
תשובה:
ההגדרה היא [math]\displaystyle{ A+B = \{a+b\mid a\in A, \quad b\in B\} }[/math].
כלומר האיברים ב [math]\displaystyle{ A+B }[/math] הם הוקטורים שאפשר לכתוב כחיבור של שני וקטורים אחרים, אחד מ [math]\displaystyle{ A }[/math] ואחד מ [math]\displaystyle{ B }[/math].
זה כמו חיבור של תתי מרחבים וקטוריים שלמדתם באלגברה לינארית 1, רק שכאן אנחנו מחברים קבוצות כלשהן שהן לא בהכרח מרחבים וקטוריים.
למשל:
1) אם [math]\displaystyle{ A=\{(a_1,a_2)\} }[/math] ו [math]\displaystyle{ B=\{(b_1,b_2)\} }[/math] (שתיהן קבוצות בנות נקודה אחת) אז [math]\displaystyle{ A+B = \{(a_1+b_1,a_2+b_2)\} }[/math]..
2) אם [math]\displaystyle{ A=\{(x,0) \mid x\in \mathbb{R}\} }[/math] ו [math]\displaystyle{ B=\{(0,x) \mid x\in \mathbb{R}\} }[/math] - כלומר [math]\displaystyle{ A }[/math] היא ציר [math]\displaystyle{ x }[/math] ו [math]\displaystyle{ B }[/math] הוא ציר [math]\displaystyle{ y }[/math] אז [math]\displaystyle{ A+B = \mathbb{R}^2 }[/math] כי כל וקטור במרחב הוא צירוף של וקטור מציר [math]\displaystyle{ x }[/math] ווקטור מציר [math]\displaystyle{ y }[/math].
3) אם [math]\displaystyle{ A= \{(x,0) \mid x\in \mathbb{R}\} }[/math] ו [math]\displaystyle{ B=\{(1,1),(0,-1)\} }[/math] אז [math]\displaystyle{ A+B=\{(x,y) \mid y\in \{1,-1\}\} }[/math]. --איתמר שטיין 12:11, 5 בנובמבר 2012 (IST)
קבוצות קשירות
האם הקבוצה הריקה או קבוצה בעלת איבר אחד היא קשירה?
תשובה: גם הקבוצה הריקה וגם קבוצה בעלת איבר אחד הן קשירות. וזה אפילו די פשוט להראות את זה מההגדרה.--איתמר שטיין 12:03, 5 בנובמבר 2012 (IST)
תרגיל 2 שאלה כללית
האם [math]\displaystyle{ A+B=\empty }[/math] כאשר [math]\displaystyle{ A=\empty }[/math]?
תשובה: כן. --איתמר שטיין 21:52, 5 בנובמבר 2012 (IST)